A note on arithmetic progressions on elliptic curves.
Campbell, Garikai (2003)
Journal of Integer Sequences [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Campbell, Garikai (2003)
Journal of Integer Sequences [electronic only]
Similarity:
Ulas, Maciej (2005)
Journal of Integer Sequences [electronic only]
Similarity:
García-Selfa, Irene, Tornero, José M. (2006)
Experimental Mathematics
Similarity:
Bremner, Andrew (1999)
Experimental Mathematics
Similarity:
Benedict H. Gross, Joe P. Buhler (1985)
Inventiones mathematicae
Similarity:
Ruthi Hortsch (2016)
Acta Arithmetica
Similarity:
We give an asymptotic formula for the number of elliptic curves over ℚ with bounded Faltings height. Silverman (1986) showed that the Faltings height for elliptic curves over number fields can be expressed in terms of modular functions and the minimal discriminant of the elliptic curve. We use this to recast the problem as one of counting lattice points in a particular region in ℝ².
Joseph H. Silverman (1987)
Journal für die reine und angewandte Mathematik
Similarity:
Rose, Harvey E. (2000)
Experimental Mathematics
Similarity:
Noboru Aoki (2004)
Acta Arithmetica
Similarity:
Rubin, Karl, Silverberg, Alice (2000)
Experimental Mathematics
Similarity:
John T. Tate (1974)
Inventiones mathematicae
Similarity:
Gerhard Frey (1981-1982)
Groupe de travail d'analyse ultramétrique
Similarity:
D.L. Ulmer (1990)
Inventiones mathematicae
Similarity: