Displaying similar documents to “Nielsen number and differential equations.”

Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')

L. H. Erbe, W. Krawcewicz (1991)

Annales Polonici Mathematici

Similarity:

Applying the topological transversality method of Granas and the a priori bounds technique we prove some existence results for systems of differential inclusions of the form y'' ∈ F(t,y,y'), where F is a Carathéodory multifunction and y satisfies some nonlinear boundary conditions.

Periodic problems for ODEs via multivalued Poincaré operators

Lech Górniewicz (1998)

Archivum Mathematicum

Similarity:

We shall consider periodic problems for ordinary differential equations of the form x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x ( a ) , where f : [ 0 , a ] × R n R n satisfies suitable assumptions. To study the above problem we shall follow an approach based on the topological degree theory. Roughly speaking, if on some ball of R n , the topological degree of, associated to (), multivalued Poincaré operator P turns out to be different from zero, then problem () has solutions. Next by using the multivalued version of the classical Liapunov-Krasnoselskǐ guiding...

On the existence of periodic solutions for nonconvex differential inclusions

Dimitrios Kravvaritis, Nikolaos S. Papageorgiou (1996)

Archivum Mathematicum

Similarity:

Using a Nagumo type tangential condition and a recent theorem on the existence of directionally continuous selector for a lower semicontinuous multifunctions, we establish the existence of periodic trajectories for nonconvex differential inclusions.