Displaying similar documents to “Some limit theorems connected with Brownian local time.”

Smoothness for the collision local time of two multidimensional bifractional Brownian motions

Guangjun Shen, Litan Yan, Chao Chen (2012)

Czechoslovak Mathematical Journal

Similarity:

Let B H i , K i = { B t H i , K i , t 0 } , i = 1 , 2 be two independent, d -dimensional bifractional Brownian motions with respective indices H i ( 0 , 1 ) and K i ( 0 , 1 ] . Assume d 2 . One of the main motivations of this paper is to investigate smoothness of the collision local time T = 0 T δ ( B s H 1 , K 1 - B s H 2 , K 2 ) d s , T > 0 , where δ denotes the Dirac delta function. By an elementary method we show that T is smooth in the sense of Meyer-Watanabe if and only if min { H 1 K 1 , H 2 K 2 } < 1 / ( d + 2 ) .