The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Endomorphisms of free metabelian Lie algebras which preserve orbits.”

Mild 2-relator pro- p -groups.

Bush, Michael R., Gärtner, Jochen, Labute, John, Vogel, Denis (2011)

The New York Journal of Mathematics [electronic only]

Similarity:

Modified proof of a local analogue of the Grothendieck conjecture

Victor Abrashkin (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A local analogue of the Grothendieck Conjecture is an equivalence between the category of complete discrete valuation fields K with finite residue fields of characteristic p 0 and the category of absolute Galois groups of fields K together with their ramification filtrations. The case of characteristic 0 fields K was studied by Mochizuki several years ago. Then the author of this paper proved it by a different method in the case p > 2 (but with no restrictions on the characteristic of K )....

Fibonacci numbers and Fermat's last theorem

Zhi-Wei Sun (1992)

Acta Arithmetica

Similarity:

Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, F n + 1 = F + F n - 1 ( n 1 ) . It is well known that F p - ( 5 / p ) 0 ( m o d p ) for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether p ² | F p - ( 5 / p ) is always impossible; up to now this is still open. In this paper the sum k r ( m o d 10 ) n k is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient F p - ( 5 / p ) / p and a criterion for the relation p | F ( p - 1 ) / 4 (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative...

On integers not of the form n - φ (n)

J. Browkin, A. Schinzel (1995)

Colloquium Mathematicae

Similarity:

W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers 2 k · 509203 (k = 1, 2,...) is of the form n - φ(n).