On integers not of the form n - φ (n)
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 1, page 55-58
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topBrowkin, J., and Schinzel, A.. "On integers not of the form n - φ (n)." Colloquium Mathematicae 68.1 (1995): 55-58. <http://eudml.org/doc/210293>.
@article{Browkin1995,
abstract = {W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers $2^k·509203$ (k = 1, 2,...) is of the form n - φ(n).},
author = {Browkin, J., Schinzel, A.},
journal = {Colloquium Mathematicae},
keywords = {Sierpiński problem; Euler phi-function; open problem},
language = {eng},
number = {1},
pages = {55-58},
title = {On integers not of the form n - φ (n)},
url = {http://eudml.org/doc/210293},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Browkin, J.
AU - Schinzel, A.
TI - On integers not of the form n - φ (n)
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 1
SP - 55
EP - 58
AB - W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers $2^k·509203$ (k = 1, 2,...) is of the form n - φ(n).
LA - eng
KW - Sierpiński problem; Euler phi-function; open problem
UR - http://eudml.org/doc/210293
ER -
References
top- [1] A. Aigner, Folgen der Art , welche nur teilbare Zahlen liefern, Math. Nachr. 23 (1961), 259-264. Zbl0100.26904
- [2] P. Erdős, Über die Zahlen der Form σ(n)-n und n-φ(n), Elem. Math. 28 (1973), 83-86.
- [3] W. Keller, Woher kommen die größ ten derzeit bekannten Primzahlen?, Mitt. Math. Ges. Hamburg 12 (1991), 211-229.
- [4] W. Sierpiński, Number Theory, Part II, PWN, Warszawa, 1959 (in Polish).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.