Nonlinear singular integral equations involving the Hilbert transform in Clifford analysis.
Bernstein, S. (1999)
Zeitschrift für Analysis und ihre Anwendungen
Similarity:
Bernstein, S. (1999)
Zeitschrift für Analysis und ihre Anwendungen
Similarity:
Bučkovska, Aneta (2001)
Novi Sad Journal of Mathematics
Similarity:
Andreas Axelsson, Kit Ian Kou, Tao Qian (2009)
Studia Mathematica
Similarity:
We generalize the notions of harmonic conjugate functions and Hilbert transforms to higher-dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These harmonic conjugates are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class of generalized double layer potential operators on Lipschitz surfaces and boundedness of related...
R. O'Neil, G. Weiss (1963)
Studia Mathematica
Similarity:
Blaya, Ricardo Abreu, Bory Reyes, Juan, Delanghe, Richard, Sommen, Frank (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lacey, Michael T. (1998)
Documenta Mathematica
Similarity:
Blaya, Ricardo Abreu, Reyes, Juan Bory, Brackx, Fred, De Knock, Bram, De Schepper, Hennie, Peña, Dixan Peña, Sommen, Frank (2008)
Boundary Value Problems [electronic only]
Similarity:
Abreu-Blaya, Ricardo, Bory-Reyes, Juan, Brackx, Fred, De Schepper, Hennie (2010)
Boundary Value Problems [electronic only]
Similarity:
Susan Slome (2000)
Studia Mathematica
Similarity:
V. Červený, J. Zahradník (1975)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
S. Pilipović (1987)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Erin Terwilleger (2007)
Studia Mathematica
Similarity:
The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.