The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Dual Szegő pairs of sequences of rational matrix-valued functions.”

Reproducing kernels and Riccati equations

Harry Dym (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

The purpose of this paper is to exhibit a connection between the Hermitian solutions of matrix Riccati equations and a class of finite dimensional reproducing kernel Krein spaces. This connection is then exploited to obtain minimal factorizations of rational matrix valued functions that are J-unitary on the imaginary axis in a natural way.

Explicit rational solutions of Knizhnik-Zamolodchikov equation

Lev Sakhnovich (2008)

Open Mathematics

Similarity:

We consider the Knizhnik-Zamolodchikov system of linear differential equations. The coefficients of this system are rational functions generated by elements of the symmetric group 𝒮 n n. We assume that parameter ρ = ±1. In previous paper [5] we proved that the fundamental solution of the corresponding KZ-equation is rational. Now we construct this solution in the explicit form.

Inertias and ranks of some Hermitian matrix functions with applications

Xiang Zhang, Qing-Wen Wang, Xin Liu (2012)

Open Mathematics

Similarity:

Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively....