# Inertias and ranks of some Hermitian matrix functions with applications

Xiang Zhang; Qing-Wen Wang; Xin Liu

Open Mathematics (2012)

- Volume: 10, Issue: 1, page 329-351
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topXiang Zhang, Qing-Wen Wang, and Xin Liu. "Inertias and ranks of some Hermitian matrix functions with applications." Open Mathematics 10.1 (2012): 329-351. <http://eudml.org/doc/269532>.

@article{XiangZhang2012,

abstract = {Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively. As applications, we derive the necessary and sufficient conditions for the existence of maximal matrices of \[H = \lbrace f(X,Y) = P - QXQ* - TYT* : AX = B,YC = D,X = X*, Y = Y*\rbrace .\]
The corresponding expressions of the maximal matrices of H are presented when the existence conditions are met. In this case, we further prove the matrix function f(X,Y)is invariant under changing the pair (X,Y). Moreover, we establish necessary and sufficient conditions for the system of matrix equations \[AX = B, YC = D, QXQ* + TYT* = P\]
to have a Hermitian solution and the system of matrix equations \[AX = C, BXB* = D\]
to have a bisymmetric solution. The explicit expressions of such solutions to the systems mentioned above are also provided. In addition, we discuss the range of inertias of the matrix functions P ± QXQ* ± TYT* where X and Y are a nonnegative definite pair of solutions to some consistent matrix equations. The findings of this pape extend some known results in the literature.},

author = {Xiang Zhang, Qing-Wen Wang, Xin Liu},

journal = {Open Mathematics},

keywords = {Maximal matrix; Hermitian matrix function; Rank; Inertia; Bisymmetric solution; Nonnegative definite matrix; maximal matrix; rank; inertia; bisymmetric solution; nonnegative definite matrix; range of values; discrete Lyapunov equation; rank; Moore-Penrose pseudoinverse},

language = {eng},

number = {1},

pages = {329-351},

title = {Inertias and ranks of some Hermitian matrix functions with applications},

url = {http://eudml.org/doc/269532},

volume = {10},

year = {2012},

}

TY - JOUR

AU - Xiang Zhang

AU - Qing-Wen Wang

AU - Xin Liu

TI - Inertias and ranks of some Hermitian matrix functions with applications

JO - Open Mathematics

PY - 2012

VL - 10

IS - 1

SP - 329

EP - 351

AB - Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively. As applications, we derive the necessary and sufficient conditions for the existence of maximal matrices of \[H = \lbrace f(X,Y) = P - QXQ* - TYT* : AX = B,YC = D,X = X*, Y = Y*\rbrace .\]
The corresponding expressions of the maximal matrices of H are presented when the existence conditions are met. In this case, we further prove the matrix function f(X,Y)is invariant under changing the pair (X,Y). Moreover, we establish necessary and sufficient conditions for the system of matrix equations \[AX = B, YC = D, QXQ* + TYT* = P\]
to have a Hermitian solution and the system of matrix equations \[AX = C, BXB* = D\]
to have a bisymmetric solution. The explicit expressions of such solutions to the systems mentioned above are also provided. In addition, we discuss the range of inertias of the matrix functions P ± QXQ* ± TYT* where X and Y are a nonnegative definite pair of solutions to some consistent matrix equations. The findings of this pape extend some known results in the literature.

LA - eng

KW - Maximal matrix; Hermitian matrix function; Rank; Inertia; Bisymmetric solution; Nonnegative definite matrix; maximal matrix; rank; inertia; bisymmetric solution; nonnegative definite matrix; range of values; discrete Lyapunov equation; rank; Moore-Penrose pseudoinverse

UR - http://eudml.org/doc/269532

ER -

## References

top- [1] Bittanti S., Bolzern P., Colaneri P., Inertia theorems for Lyapunov and Riccati equations - an updated view, In: Linear Algebra in Signals, Systems, and Control, Boston, 1986, SIAM, Philadelphia, 1988, 11–35 Zbl0666.93023
- [2] Canto e Castro L., Dias S., da Graça Temido M., Looking for max-semistability: A new test for the extreme value condition, J. Statist. Plann. Inference, 2011, 141(9), 3005–3020 http://dx.doi.org/10.1016/j.jspi.2011.03.020 Zbl1333.62137
- [3] Cantoni A., Butler P., Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 1976, 13(3), 275–288 http://dx.doi.org/10.1016/0024-3795(76)90101-4
- [4] Chang X.W., Wang J.S., The symmetric solution of the matrix equations AX + YA = C, AXA T + BYB T = C, and (A TXA;B TXB) = (C,D), Linear Algebra Appl., 1993, 179, 171–189 http://dx.doi.org/10.1016/0024-3795(93)90328-L
- [5] Chu D.L., Chan H.C., Ho D.W.C., Regularization of singular systems by derivative and proportional output feedback, SIAM J. Matrix Anal. Appl., 1998, 19(1), 21–38 http://dx.doi.org/10.1137/S0895479895270963 Zbl0912.93027
- [6] Chu D., De Lathauwer L., De Moor B., On the computation of the restricted singular value decomposition via the cosine-sine decomposition, SIAM J. Matrix Anal. Appl., 2000, 22(2), 580–601 http://dx.doi.org/10.1137/S0895479898346983 Zbl0976.65041
- [7] Chu D., Hung Y.S., Woerdeman H.J., Inertia and rank characterizations of some matrix expressions, SIAM J. Matrix Anal. Appl., 2009, 31(3), 1187–1226 http://dx.doi.org/10.1137/080712945 Zbl1198.15010
- [8] Datta B.N., Stability and inertia, Linear Algebra Appl., 1999, 302/303, 563–600 http://dx.doi.org/10.1016/S0024-3795(99)00213-X Zbl0972.15009
- [9] Dehghan M., Hajarian M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 2010, 34(3), 639–654 http://dx.doi.org/10.1016/j.apm.2009.06.018 Zbl1185.65054
- [10] Dehghan M., Hajarian M., The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra Appl., 2010, 432(6), 1531–1552 http://dx.doi.org/10.1016/j.laa.2009.11.014 Zbl1187.65042
- [11] Higham N.J., Cheng S.H., Modifying the inertia of matrices arising in optimization, Linear Algebra Appl., 1998, 275/276, 261–279 http://dx.doi.org/10.1016/S0024-3795(97)10015-5 Zbl0935.65033
- [12] Khan I.A., Wang Q.-W., Song G.-J., Minimal ranks of some quaternion matrix expressions with applications, Appl. Math. Comput., 2010, 217(5), 2031–2040 http://dx.doi.org/10.1016/j.amc.2010.07.004 Zbl1204.15005
- [13] Khatri C.G., Mitra S.K., Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 1976, 31(4), 579–585 http://dx.doi.org/10.1137/0131050 Zbl0359.65033
- [14] Marsaglia G., Styan G.P.H., Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 1974, 2, 269–292 http://dx.doi.org/10.1080/03081087408817070 Zbl0297.15003
- [15] Peng Z., Hu X., Zhang L., The inverse problem of bisymmetric matrices with a submatrix constraint, Numer. Linear Algebra Appl., 2004, 11(1), 59–73 http://dx.doi.org/10.1002/nla.333 Zbl1164.15322
- [16] Peng Z., Hu X., Zhang L., The bisymmetric solutions of the matrix equation A 1X 1B 1 + A 2X 2B 2 + ... + A l X l B l = C and its optimal approximation, Linear Algebra Appl., 2007, 426, 583–595 http://dx.doi.org/10.1016/j.laa.2007.05.034
- [17] Pereira E.S., On solvents of matrix polynomials, Appl. Numer. Math., 2003, 47(2), 197–208 http://dx.doi.org/10.1016/S0168-9274(03)00058-8 Zbl1046.15016
- [18] Pressman I.S., Matrices with multiple symmetry properties: applications of centro-Hermitian and per-Hermitian matrices, Linear Algebra Appl., 1998, 284(1–3), 239–258 http://dx.doi.org/10.1016/S0024-3795(98)10144-1 Zbl0957.15019
- [19] Reid R.M., Some eigenvalue properties of persymmetric matrices, SIAM Rev., 1997, 39(2), 313–316 http://dx.doi.org/10.1137/S0036144595294801 Zbl0876.15006
- [20] Sayed A.H., Hassibi B., Kailath T., Inertia properties of indefinite quadratic forms, IEEE Signal Processing Letters, 1996, 3(2), 57–59 http://dx.doi.org/10.1109/97.484217 Zbl0863.93091
- [21] Stykel T., Stability and inertia theorems for generalized Lyapunov equations, Linear Algebra Appl., 2002, 355, 297–314 http://dx.doi.org/10.1016/S0024-3795(02)00354-3 Zbl1016.15010
- [22] Tian Y., Upper and lower bounds for ranks of matrix expressions using generalized inverses, Linear Algebra Appl., 2002, 355, 187–214 http://dx.doi.org/10.1016/S0024-3795(02)00345-2 Zbl1016.15003
- [23] Tian Y., Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 2010, 433(2), 263–296 http://dx.doi.org/10.1016/j.laa.2010.02.018 Zbl1205.15033
- [24] Wang Q.-W., Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 2005, 49(5–6), 641–650 http://dx.doi.org/10.1016/j.camwa.2005.01.014 Zbl1138.15003
- [25] Wang Q., Chang H., Lin C., On the centro-symmetric solution of a system of matrix equations over a regular ring with identity, Algebra Colloq., 2007, 14(4), 555–570
- [26] Wang Q.-W., Fei-Zhang, The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 2008, 17, 88–101 Zbl1147.15012
- [27] Wang Q.W., Jiang J., Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation, Electron. J. Linear Algebra, 2010, 20, 552–573 Zbl1207.15016
- [28] Wang Q.-W., Li C.-K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 2009, 430(5–6), 1626–1640 http://dx.doi.org/10.1016/j.laa.2008.05.031
- [29] Wang Q.-W., Song G.-J., Lin C.-Y., Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application, Appl. Math. Comput., 2007, 189(2), 1517–1532 http://dx.doi.org/10.1016/j.amc.2006.12.039 Zbl1124.15010
- [30] Wang Q.-W., Song G.-J., Lin C.-Y., Rank equalities related to the generalized inverse A T,S(2) with applications, Appl. Math. Comput., 2008, 205(1), 370–382 http://dx.doi.org/10.1016/j.amc.2008.08.016 Zbl1159.15006
- [31] Wang Q., Song G., Liu X., Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring with applications, Algebra Colloq., 2009, 16(2), 293–308 Zbl1176.15020
- [32] Wang Q.-W., Sun J.-H., Li S.-Z., Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 2002, 353, 169–182 http://dx.doi.org/10.1016/S0024-3795(02)00303-8 Zbl1004.15017
- [33] Wang Q.W., van der Woude J.W., Yu S.W., An equivalence canonical form of a matrix triplet over an arbitrary division ring with applications, Sci. China Math., 2011, 54(5), 907–924 http://dx.doi.org/10.1007/s11425-010-4154-9 Zbl1218.15008
- [34] Wang Q.-W., Wu Z.-C., Common Hermitian solutions to some operator equations on Hilbert C*-modules, Linear Algebra Appl., 2010, 432(12), 3159–3171 http://dx.doi.org/10.1016/j.laa.2010.01.015 Zbl1197.47031
- [35] Wang Q., Yu S., Xie W., Extreme ranks of real matrices in solution of the quaternion matrix equation AXB = C with applications, Algebra Colloq., 2010, 17(2), 345–360 Zbl1188.15016
- [36] Wang Q.-W., Yu S.-W., Zhang Q., The real solution to a system of quaternion matrix equations with applications, Comm. Algebra, 2009, 37(6), 2060–2079 http://dx.doi.org/10.1080/00927870802317590 Zbl05586208
- [37] Wang Q.W., Zhang H.-S., Song G.-J., A new solvable condition for a pair of generalized Sylvester equations, Electron. J. Linear Algebra, 2009, 18, 289–301 Zbl1190.15019
- [38] Wang Q.-W., Zhang H.-S., Yu S.-W., On solutions to the quaternion matrix equation AXB + CYD = E, Electron. J. Linear Algebra, 2008, 17, 343–358
- [39] Wimmer H.K., Inertia theorems for matrices, controllability, and linear vibrations, Linear Algebra Appl., 1974, 8, 337–343 http://dx.doi.org/10.1016/0024-3795(74)90060-3
- [40] Xie D., Hu X., Sheng Y., The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations, Linear Algebra Appl., 2006, 418(1), 142–152 http://dx.doi.org/10.1016/j.laa.2006.01.027 Zbl1109.65034
- [41] Xie D., Zhang L., Hu X., The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices, J. Comput. Math., 2000, 18(6), 597–608 Zbl0966.15008
- [42] Xie D., Zhang Z., Liu Z., Theory and method for updating least-squares finite element model of symmetric generalized centro-symmetric matrices, J. Comput. Appl. Math., 2008, 216(2), 484–497 http://dx.doi.org/10.1016/j.cam.2007.05.030 Zbl1138.74050
- [43] Yuan S., Liao A., Lei Y., Least squares Hermitian solution of the matrix equation (AXB, CXD) = (E, F) with the least norm over the skew field of quaternions, Math. Comput. Modelling, 2008, 48(1–2), 91–100 http://dx.doi.org/10.1016/j.mcm.2007.08.009 Zbl1145.15303
- [44] Yuan S., Liao A., Lei Y., Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices, Comput. Math. Appl., 2008, 55(11), 2521–2532 http://dx.doi.org/10.1016/j.camwa.2007.10.006 Zbl1142.65318
- [45] Zhang H.-S., Wang Q.-W., Ranks of submatrices in a general solution to a quaternion system with applications, Bull. Korean Math. Soc., 2011, 48(5), 969–990 http://dx.doi.org/10.4134/BKMS.2011.48.5.969 Zbl1229.15017
- [46] Zhang Q., Wang Q.-W., The (P,Q)-(skew)symmetric extremal rank solutions to a system of quaternion matrix equations, Appl. Math. Comput., 2011, 217(22), 9286–9296 http://dx.doi.org/10.1016/j.amc.2011.04.011 Zbl1222.15022
- [47] Zhang X., The general Hermitian nonnegative-definite solution to the matrix equation AXA* + BYB* = C, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 2005, 21(1), 33–42
- [48] Zhao L., Hu X., Zhang L., Least squares solutions to AX = B for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation, Linear Algebra Appl., 2008, 428(4), 871–880 http://dx.doi.org/10.1016/j.laa.2007.08.019 Zbl1133.15016

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.