Displaying similar documents to “Finite rank intermediate Hankel operators and the big Hankel operator.”

Products of Toeplitz operators and Hankel operators

Yufeng Lu, Linghui Kong (2014)

Studia Mathematica

Similarity:

We first determine when the sum of products of Hankel and Toeplitz operators is equal to zero; then we characterize when the product of a Toeplitz operator and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz operator and when it is a finite rank perturbation of a Toeplitz operator.

On Pták’s generalization of Hankel operators

Carmen H. Mancera, Pedro José Paúl (2001)

Czechoslovak Mathematical Journal

Similarity:

In 1997 Pták defined generalized Hankel operators as follows: Given two contractions T 1 ( 1 ) and T 2 ( 2 ) , an operator X 1 2 is said to be a generalized Hankel operator if T 2 X = X T 1 * and X satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of T 1 and T 2 . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong...

On rank one elements

Robin Harte (1995)

Studia Mathematica

Similarity:

Without the "scarcity lemma", two kinds of "rank one elements" are identified in semisimple Banach algebras.

On truncations of Hankel and Toeplitz operators.

Aline Bonami, Joaquim Bruna (1999)

Publicacions Matemàtiques

Similarity:

We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes.