A construction of mirror -algebras.
So, Keum Sook (2011)
International Journal of Mathematics and Mathematical Sciences
Similarity:
So, Keum Sook (2011)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Daniel W. Stroock (1976)
Colloquium Mathematicae
Similarity:
Arzumanyan, V.A. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Cedilnik, A. (2000)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
G. Grätzer, J. Sichler (1974)
Colloquium Mathematicae
Similarity:
Marcus Tressl (2002)
Banach Center Publications
Similarity:
Kazimierz Urbanik (1969)
Colloquium Mathematicum
Similarity:
Ewa Graczyńska, Andrzej Wroński (1978)
Colloquium Mathematicum
Similarity:
Leon Henkin, Diane Resek (1975)
Fundamenta Mathematicae
Similarity:
T. P. Speed (1971)
Colloquium Mathematicae
Similarity:
R. Beazer (1974)
Colloquium Mathematicae
Similarity:
Christoph Bandt (1979)
Colloquium Mathematicae
Similarity:
Tarek Sayed Ahmed (2002)
Fundamenta Mathematicae
Similarity:
SC, CA, QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras and Halmos' quasipolyadic algebras with equality, respectively. Generalizing a result of Andréka and Németi on cylindric algebras, we show that for K ∈ SC,QA,CA,QEA and any β > 2 the class of 2-dimensional neat reducts of β-dimensional algebras in K is not closed under forming elementary subalgebras, hence is not elementary. Whether this result extends...
Neggers, Joseph, Ahn, Sun Shin, Kim, Hee Sik (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lidia Obojska, Andrzej Walendziak (2020)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
Similarity:
This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.