Displaying similar documents to “Asymptotic behavior of thin ferroelectric materials.”

Large time behavior of the solution to an initial-boundary value problem with mixed boundary conditions for a nonlinear integro-differential equation

Temur Jangveladze, Zurab Kiguradze (2011)

Open Mathematics

Similarity:

Large time behavior of the solution to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. Furthermore, the rate of convergence is given. Initial-boundary value problem with mixed boundary conditions is considered.

Homogenization of ferromagnetic multilayers in the presence of surface energies

Kévin Santugini-Repiquet (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the homogenization process of ferromagnetic multilayers in the presence of surface energies: super-exchange, also called interlayer exchange coupling, and surface anisotropy. The two main difficulties are the non-linearity of the Landau-Lifshitz equation and the absence of a good sequence of extension operators for the multilayer geometry. First, we consider the case when surface anisotropy is the dominant term, then the case when the magnitude of the super-exchange interaction...

Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates

G. Perla Menzala, Ademir F. Pazoto, Enrique Zuazua (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε 0 . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε . In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε . In the limit as ε 0 we obtain damped Berger–Timoshenko...