Displaying similar documents to “Density of eigenvalues of random normal matrices with an arbitrary potential, and of generalized normal matrices.”

Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach

Víctor Álvarez, José Andrés Armario, María Dolores Frau, Félix Gudiel (2015)

Open Mathematics

Similarity:

An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1;...

Bessel matrix differential equations: explicit solutions of initial and two-point boundary value problems

Enrique Navarro, Rafael Company, Lucas Jódar (1993)

Applicationes Mathematicae

Similarity:

In this paper we consider Bessel equations of the type t 2 X ( 2 ) ( t ) + t X ( 1 ) ( t ) + ( t 2 I - A 2 ) X ( t ) = 0 , where A is an n × n complex matrix and X(t) is an n × m matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.

Determinant Representations of Sequences: A Survey

A. R. Moghaddamfar, S. Navid Salehy, S. Nima Salehy (2014)

Special Matrices

Similarity:

This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices...

The 123 theorem of Probability Theory and Copositive Matrices

Alexander Kovačec, Miguel M. R. Moreira, David P. Martins (2014)

Special Matrices

Similarity:

Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(∥X − Y∥ ≤ b) ≤ c Prob(∥X − Y∥ ≤ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral...