Marchuk identity-type second order difference schemes of 2-d and 3-d elliptic problems with intersected interfaces
Ivanka Tr. Angelova, Lubin G. Vulkov (2007)
Kragujevac Journal of Mathematics
Similarity:
Ivanka Tr. Angelova, Lubin G. Vulkov (2007)
Kragujevac Journal of Mathematics
Similarity:
Amiraliyev, G.M., Kudu, Mustafa, Duru, Hakki (2004)
Journal of Applied Mathematics
Similarity:
Çakır, Musa, Amiraliyev, Gabil M. (2010)
Journal of Applied Mathematics
Similarity:
Ta Van Dinh (1982)
Aplikace matematiky
Similarity:
The author proves the existence of the multi-parameter asymptotic error expansion to the usual five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.
Xin, Guoce (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kapitonov, Boris V., Perla Menzala, G. (2003)
Portugaliae Mathematica. Nova Série
Similarity:
Papaschinopoulos, G., Schinas, C.J., Stefanidou, G. (2007)
Advances in Difference Equations [electronic only]
Similarity:
Ishikawa, Masao, Kawamuko, Hiroyuki, Okada, Soichi (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Çakır, Musa (2010)
Advances in Difference Equations [electronic only]
Similarity:
Hiroki Sano, Tamotsu Izumida, Ken-Ichi Mitani, Tomoyoshi Ohwada, Kichi-Suke Saito (2014)
Open Mathematics
Similarity:
In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.