Displaying similar documents to “Expression of a tensor commutation matrix in terms of the generalized Gell-Mann matrices.”

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

Complex Hadamard Matrices contained in a Bose–Mesner algebra

Takuya Ikuta, Akihiro Munemasa (2015)

Special Matrices

Similarity:

Acomplex Hadamard matrix is a square matrix H with complex entries of absolute value 1 satisfying HH* = nI, where * stands for the Hermitian transpose and I is the identity matrix of order n. In this paper, we first determine the image of a certain rational map from the d-dimensional complex projective space to Cd(d+1)/2. Applying this result with d = 3, we give constructions of complex Hadamard matrices, and more generally, type-II matrices, in the Bose–Mesner algebra of a certain 3-class...

Nonsingularity and P -matrices.

Jiří Rohn (1990)

Aplikace matematiky

Similarity:

New proofs of two previously published theorems relating nonsingularity of interval matrices to P -matrices are given.

Generalizations of Nekrasov matrices and applications

Ljiljana Cvetković, Vladimir Kostić, Maja Nedović (2015)

Open Mathematics

Similarity:

In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already...

Studying the various properties of MIN and MAX matrices - elementary vs. more advanced methods

Mika Mattila, Pentti Haukkanen (2016)

Special Matrices

Similarity:

Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also...