Displaying similar documents to “Geometric linearization of ordinary differential equations.”

Characterizations of complex space forms by means of geodesic spheres and tubes

J. Gillard (1996)

Colloquium Mathematicae

Similarity:

We prove that a connected complex space form ( M n ,g,J) with n ≥ 4 can be characterized by the Ricci-semi-symmetry condition R ˜ X Y · ϱ ˜ = 0 and by the semi-parallel condition R ˜ X Y · σ = 0 , considering special choices of tangent vectors X , Y to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where R ˜ , ϱ ˜ and σ denote the Riemann curvature tensor, the corresponding Ricci tensor of type (0,2) and the second fundamental form of the spheres or tubes and where R ˜ X Y acts as a derivation.

Lorentzian geometry in the large

John Beem (1997)

Banach Center Publications

Similarity:

Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important...