A property of quasi-complements
Robert H. Lohman (1974)
Colloquium Mathematicae
Similarity:
Robert H. Lohman (1974)
Colloquium Mathematicae
Similarity:
Cabiria Andreian Cazacu (1981)
Annales Polonici Mathematici
Similarity:
M. Sanchis, A. Tamariz-Mascarúa (1999)
Colloquium Mathematicae
Similarity:
The notion of quasi-p-boundedness for p ∈ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in can be defined in terms of quasi-p-pseudocompactness. For p ∈ , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × is bounded in X × , if and only if , where is the set of Rudin-Keisler predecessors of p.
Baker, C.W. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Tomasz Natkaniec (1992)
Mathematica Slovaca
Similarity:
Mohamad, Abdul M. (2002)
Mathematica Pannonica
Similarity:
T. K. Pal, M. Maiti (1977)
Matematički Vesnik
Similarity:
Roman Sikorski (1974)
Fundamenta Mathematicae
Similarity: