Asymptotically normal explicit estimation of parameters in the Michaelis--Menten equation.
Linke, Yu.Yu., Sakhanenko, A.I. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Linke, Yu.Yu., Sakhanenko, A.I. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Dolgopolova, O. B., Zverovich, È. I. (2000)
Sibirskij Matematicheskij Zhurnal
Similarity:
Kuznetsov, D.S. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Bruce C. Berndt, Heng Huat Chan, Liang-Cheng Zhang (1995)
Acta Arithmetica
Similarity:
Khusnutdinova, N.V. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Egorov, A.A., Korobkov, M.V. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Borovkov, A.A. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Bruce C. Berndt, Heng Huat Chan, Liang-Cheng Zhang (1998)
Acta Arithmetica
Similarity:
Mikhajlov, G.A., Burmistrov, A.V. (2000)
Siberian Mathematical Journal
Similarity:
Hanen Damak, Mohamed Ali Hammami, Yeong-Jeu Sun (2012)
Kybernetika
Similarity:
In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit...