The existence of limit cycle for perturbed bilinear systems
Hanen Damak; Mohamed Ali Hammami; Yeong-Jeu Sun
Kybernetika (2012)
- Volume: 48, Issue: 2, page 177-189
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDamak, Hanen, Hammami, Mohamed Ali, and Sun, Yeong-Jeu. "The existence of limit cycle for perturbed bilinear systems." Kybernetika 48.2 (2012): 177-189. <http://eudml.org/doc/247231>.
@article{Damak2012,
abstract = {In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon $ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.},
author = {Damak, Hanen, Hammami, Mohamed Ali, Sun, Yeong-Jeu},
journal = {Kybernetika},
keywords = {perturbed bilinear system; feedback control; limit cycle; feedback control; perturbed bilinear system; limit cycle},
language = {eng},
number = {2},
pages = {177-189},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The existence of limit cycle for perturbed bilinear systems},
url = {http://eudml.org/doc/247231},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Damak, Hanen
AU - Hammami, Mohamed Ali
AU - Sun, Yeong-Jeu
TI - The existence of limit cycle for perturbed bilinear systems
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 177
EP - 189
AB - In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon $ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
LA - eng
KW - perturbed bilinear system; feedback control; limit cycle; feedback control; perturbed bilinear system; limit cycle
UR - http://eudml.org/doc/247231
ER -
References
top- T. M. Apostol, Mathematical Analysis., Addison-Wesley, 1957. Zbl0309.26002MR0087718
- L. Iannelli, K. H. Johansson, U. Jonsson, F. Vasca, 10.1109/TCSI.2003.815194, IEEE Trans. Circuits and Systems, Part I 50 (2003), 8, 1025-1035. MR2008154DOI10.1109/TCSI.2003.815194
- H. K. Khalil, Nonlinear Systems., Prentice-Hall, New York 2002. Zbl1194.93083
- A. I. Mees, Limit cycles stability., IMA J. Appl. Math. 11 (1972), 3, 281-295. MR0366468
- R. Miller, A. Michel, G. S. Krenz, 10.1109/TCS.1983.1085408, IEEE Trans. Circuits and Systems 30 (1983), 9, 684-696. Zbl0536.93041MR0718403DOI10.1109/TCS.1983.1085408
- Y. Sun, 10.1016/j.chaos.2006.01.004, Chaos, Solitons and Fractals 33 (2007), 156-162. Zbl1152.93395MR2301853DOI10.1016/j.chaos.2006.01.004
- Y. Sun, 10.1016/j.chaos.2006.10.031, Chaos, Solitons and Fractals 38 (2008), 89-96. Zbl1142.39307MR2417646DOI10.1016/j.chaos.2006.10.031
- Y. Sun, 10.1016/j.chaos.2007.07.006, Chaos, Solitons and Fractals 39 (2009), 2357-2362. Zbl1197.34045DOI10.1016/j.chaos.2007.07.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.