Displaying similar documents to “Hochschild cohomology theories in white noise analysis.”

Quantum Itô B*-algebras, their classification and decomposition

V. Belavkin (1998)

Banach Center Publications

Similarity:

A simple axiomatic characterization of the general (infinite dimensional, noncommutative) Itô algebra is given and a pseudo-Euclidean fundamental representation for such algebra is described. The notion of Itô B*-algebra, generalizing the C*-algebra, is defined to include the Banach infinite dimensional Itô algebras of quantum Brownian and quantum Lévy motion, and the B*-algebras of vacuum and thermal quantum noise are characterized. It is proved that every Itô algebra is canonically...

Hall's transformation via quantum stochastic calculus

Paula Cohen, Robin Hudson, K. Parthasarathy, Sylvia Pulmannová (1998)

Banach Center Publications

Similarity:

It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second...

The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products

Thomas Tradler (2008)

Annales de l’institut Fourier

Similarity:

We define a BV-structure on the Hochschild cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A -algebra with a symmetric and non-degenerate -inner product.