The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products

Thomas Tradler[1]

  • [1] Thomas Tradler College of Technology of the City University of New York Department of Mathematics 300 Jay Street Brooklyn NY 11201 (USA)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2351-2379
  • ISSN: 0373-0956

Abstract

top
We define a BV-structure on the Hochschild cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A -algebra with a symmetric and non-degenerate -inner product.

How to cite

top

Tradler, Thomas. "The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products." Annales de l’institut Fourier 58.7 (2008): 2351-2379. <http://eudml.org/doc/10381>.

@article{Tradler2008,
abstract = {We define a BV-structure on the Hochschild cohomology of a unital, associative algebra $A$ with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital $A_\infty $-algebra with a symmetric and non-degenerate $\infty $-inner product.},
affiliation = {Thomas Tradler College of Technology of the City University of New York Department of Mathematics 300 Jay Street Brooklyn NY 11201 (USA)},
author = {Tradler, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Hochschild cohomology; Batalin Vilkovisky algebra; Gerstenhaber structures; BV structures; Batalin-Vilkovisky algebras; inner products},
language = {eng},
number = {7},
pages = {2351-2379},
publisher = {Association des Annales de l’institut Fourier},
title = {The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products},
url = {http://eudml.org/doc/10381},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Tradler, Thomas
TI - The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2351
EP - 2379
AB - We define a BV-structure on the Hochschild cohomology of a unital, associative algebra $A$ with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital $A_\infty $-algebra with a symmetric and non-degenerate $\infty $-inner product.
LA - eng
KW - Hochschild cohomology; Batalin Vilkovisky algebra; Gerstenhaber structures; BV structures; Batalin-Vilkovisky algebras; inner products
UR - http://eudml.org/doc/10381
ER -

References

top
  1. M. Chas, D. Sullivan, String Topology, (1999) Zbl1185.55013
  2. R. L. Cohen, J. D. S. Jones, A Homotopy Theoretic Realization Of String Topology, Math. Ann. 324 (2002), 773-798 Zbl1025.55005MR1942249
  3. R. L. Cohen, J. D. S. Jones, J. Yan, The loop homology algebra of spheres and projective spaces, 215 (2004), Birkhäuser, Basel Zbl1054.55006MR2039760
  4. A. Connes, Non-commutative differential geometry, Publ. Math. IHÉS 62 (1985), 257-360 Zbl0592.46056MR823176
  5. K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), 165-214 Zbl1171.14038MR2298823
  6. Y. Felix, J.-C. Thomas, Rational BV-algebra in String Topology, (2007) Zbl1160.55006MR2415345
  7. Y. Felix, J.-C. Thomas, M. Vigue-Poirrier, Loop homology algebra of a closed manifold 
  8. M. Gerstenhaber, The Cohomology Structure Of An Associative Ring, Ann. of Math. 78 (1963), 267-288 Zbl0131.27302MR161898
  9. E. Getzler, J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, (1994) 
  10. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423 Zbl0644.55005MR870737
  11. R. M. Kaufmann, A proof of a cyclic version of Deligne’s conjecture via cacti, (2004) 
  12. R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, (2006) 
  13. J.-L. Loday, Cyclic Homology, 301 (1992), Springer-Verlag Zbl0780.18009MR1217970
  14. M. Markl, S. Shnider, J. Stasheff, Operads in Algebra, Topology and Physics, 96 (2002), Amer. Math. Soc., Providence, RI Zbl1017.18001MR1898414
  15. L. Menichi, String topology for spheres Zbl1159.55004
  16. L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), 231-251 Zbl1101.19003MR2114167
  17. S. A. Merkulov, De Rham model for string topology, Int. Math. Res. Not. 55 (2004), 2955-2981 Zbl1066.55008MR2099178
  18. J. Stasheff, Homotopy associativity of H -spaces I, Trans. AMS 108 (1963), 275-292 Zbl0114.39402MR158400
  19. J. Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Applied Algebra 89 (1993), 231-235 Zbl0786.57017MR1239562
  20. T. Tradler, Infinity-inner-products on A -infinity algebras Zbl1243.16008
  21. T. Tradler, M. Zeinalian, On the cyclic Deligne conjecture, J. Pure Appl. Algebra 204 (2006), 280-299 Zbl1147.16012MR2184812
  22. T. Tradler, M. Zeinalian, Algebraic string operations, -Theory 38 (2007), 59-82 Zbl1144.55012MR2353864
  23. T. Tradler, M. Zeinalian, D. Sullivan, Infinity structure of Poincaré duality spaces, Algebr. Geom. Topol. 7 (2007), 233-260 Zbl1137.57025MR2308943
  24. T. Yang, A Batalin-Vilkovisky Algebra structure on the Hochschild Cohomology of Truncated Polynomials Zbl1282.55013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.