The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
- [1] Thomas Tradler College of Technology of the City University of New York Department of Mathematics 300 Jay Street Brooklyn NY 11201 (USA)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2351-2379
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTradler, Thomas. "The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products." Annales de l’institut Fourier 58.7 (2008): 2351-2379. <http://eudml.org/doc/10381>.
@article{Tradler2008,
abstract = {We define a BV-structure on the Hochschild cohomology of a unital, associative algebra $A$ with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital $A_\infty $-algebra with a symmetric and non-degenerate $\infty $-inner product.},
affiliation = {Thomas Tradler College of Technology of the City University of New York Department of Mathematics 300 Jay Street Brooklyn NY 11201 (USA)},
author = {Tradler, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Hochschild cohomology; Batalin Vilkovisky algebra; Gerstenhaber structures; BV structures; Batalin-Vilkovisky algebras; inner products},
language = {eng},
number = {7},
pages = {2351-2379},
publisher = {Association des Annales de l’institut Fourier},
title = {The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products},
url = {http://eudml.org/doc/10381},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Tradler, Thomas
TI - The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2351
EP - 2379
AB - We define a BV-structure on the Hochschild cohomology of a unital, associative algebra $A$ with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital $A_\infty $-algebra with a symmetric and non-degenerate $\infty $-inner product.
LA - eng
KW - Hochschild cohomology; Batalin Vilkovisky algebra; Gerstenhaber structures; BV structures; Batalin-Vilkovisky algebras; inner products
UR - http://eudml.org/doc/10381
ER -
References
top- M. Chas, D. Sullivan, String Topology, (1999) Zbl1185.55013
- R. L. Cohen, J. D. S. Jones, A Homotopy Theoretic Realization Of String Topology, Math. Ann. 324 (2002), 773-798 Zbl1025.55005MR1942249
- R. L. Cohen, J. D. S. Jones, J. Yan, The loop homology algebra of spheres and projective spaces, 215 (2004), Birkhäuser, Basel Zbl1054.55006MR2039760
- A. Connes, Non-commutative differential geometry, Publ. Math. IHÉS 62 (1985), 257-360 Zbl0592.46056MR823176
- K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), 165-214 Zbl1171.14038MR2298823
- Y. Felix, J.-C. Thomas, Rational BV-algebra in String Topology, (2007) Zbl1160.55006MR2415345
- Y. Felix, J.-C. Thomas, M. Vigue-Poirrier, Loop homology algebra of a closed manifold
- M. Gerstenhaber, The Cohomology Structure Of An Associative Ring, Ann. of Math. 78 (1963), 267-288 Zbl0131.27302MR161898
- E. Getzler, J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, (1994)
- J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423 Zbl0644.55005MR870737
- R. M. Kaufmann, A proof of a cyclic version of Deligne’s conjecture via cacti, (2004)
- R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, (2006)
- J.-L. Loday, Cyclic Homology, 301 (1992), Springer-Verlag Zbl0780.18009MR1217970
- M. Markl, S. Shnider, J. Stasheff, Operads in Algebra, Topology and Physics, 96 (2002), Amer. Math. Soc., Providence, RI Zbl1017.18001MR1898414
- L. Menichi, String topology for spheres Zbl1159.55004
- L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), 231-251 Zbl1101.19003MR2114167
- S. A. Merkulov, De Rham model for string topology, Int. Math. Res. Not. 55 (2004), 2955-2981 Zbl1066.55008MR2099178
- J. Stasheff, Homotopy associativity of -spaces I, Trans. AMS 108 (1963), 275-292 Zbl0114.39402MR158400
- J. Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Applied Algebra 89 (1993), 231-235 Zbl0786.57017MR1239562
- T. Tradler, Infinity-inner-products on -infinity algebras Zbl1243.16008
- T. Tradler, M. Zeinalian, On the cyclic Deligne conjecture, J. Pure Appl. Algebra 204 (2006), 280-299 Zbl1147.16012MR2184812
- T. Tradler, M. Zeinalian, Algebraic string operations, -Theory 38 (2007), 59-82 Zbl1144.55012MR2353864
- T. Tradler, M. Zeinalian, D. Sullivan, Infinity structure of Poincaré duality spaces, Algebr. Geom. Topol. 7 (2007), 233-260 Zbl1137.57025MR2308943
- T. Yang, A Batalin-Vilkovisky Algebra structure on the Hochschild Cohomology of Truncated Polynomials Zbl1282.55013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.