The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence and distribution of limit cycles in a Hamiltonian system.”

Uniqueness of limit cycles bounded by two invariant parabolas

Eduardo Sáez, Iván Szántó (2012)

Applications of Mathematics

Similarity:

In this paper we consider a class of cubic polynomial systems with two invariant parabolas and prove in the parameter space the existence of neighborhoods such that in one the system has a unique limit cycle and in the other the system has at most three limit cycles, bounded by the invariant parabolas.

Matchings Extend to Hamiltonian Cycles in 5-Cube

Fan Wang, Weisheng Zhao (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.

The null divergence factor.

Javier Chavarriga, Héctor Giacomini, Jaume Giné (1997)

Publicacions Matemàtiques

Similarity:

Let (P,Q) be a C vector field defined in a open subset U ⊂ R. We call a null divergence factor a C solution V (x, y) of the equation P ∂V/∂x + Q ∂V/ ∂y = ( ∂P/∂x + ∂Q/∂y ) V. In previous works it has been shown that this function plays a fundamental role in the problem of the center and in the determination of the limit cycles. In this paper we show how to construct systems with a given null divergence factor. The method presented in this paper is a generalization of the classical Darboux...

On theH-Force Number of Hamiltonian Graphs and Cycle Extendability

Erhard Hexel (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The H-force number h(G) of a hamiltonian graph G is the smallest cardinality of a set A ⊆ V (G) such that each cycle containing all vertices of A is hamiltonian. In this paper a lower and an upper bound of h(G) is given. Such graphs, for which h(G) assumes the lower bound are characterized by a cycle extendability property. The H-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula.

Pancyclism and small cycles in graphs

Ralph Faudree, Odile Favaron, Evelyne Flandrin, Hao Li (1996)

Discussiones Mathematicae Graph Theory

Similarity:

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (dC(u,v)+1, [(n+19)/13]), d C ( u , v ) being the distance of u and v on a hamiltonian cycle...