Integrable models of interaction of matter with radiation.
Inozemtsev, Vladimir I., Inozemtseva, Natalia G. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Inozemtsev, Vladimir I., Inozemtseva, Natalia G. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Dolgopolova, O. B., Zverovich, È. I. (2000)
Sibirskij Matematicheskij Zhurnal
Similarity:
Meshkov, Anatoly G., Balakhnev, Maxim Ju. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Linke, Yu.Yu., Sakhanenko, A.I. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Kuniba, Atsuo, Takagi, Taichiro (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Duviryak, Askold (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Fujii, Masatoshi, Zuo, Hongliang (2010)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Kurakin, L.G., Yudovich, V.I. (2000)
Sibirskij Matematicheskij Zhurnal
Similarity:
Ricciardi, Tonia (2008)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Patricio Ordaz, Hussain Alazki, Alexander Poznyak (2013)
Kybernetika
Similarity:
This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain)...
Gerdjikov, Vladimir S., Kostov, Nikolay A. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Kuznetsov, Yu.I. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity: