The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Abundancy “outlaws” of the form ( σ ( N ) + t ) N .”

On near-perfect numbers

Min Tang, Xiaoyan Ma, Min Feng (2016)

Colloquium Mathematicae

Similarity:

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².

On near-perfect and deficient-perfect numbers

Min Tang, Xiao-Zhi Ren, Meng Li (2013)

Colloquium Mathematicae

Similarity:

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.

On a sum of divisors problem.

De Koninck, Jean-Marie, Ivić, Aleksandar (1998)

Publications de l'Institut Mathématique. Nouvelle Série

Similarity:

Odd perfect polynomials over 𝔽 2

Luis H. Gallardo, Olivier Rahavandrainy (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A perfect polynomial over 𝔽 2 is a polynomial A 𝔽 2 [ x ] that equals the sum of all its divisors. If gcd ( A , x 2 + x ) = 1 then we say that A is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to 2 .