Displaying similar documents to “Heat Kernel and Hard Estimates for Locally Euclidean Manifolds with Fractal Boundaries.”

Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays

Thierry Coulhon (1998)

Journées équations aux dérivées partielles

Similarity:

In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 - L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods....

Heat kernel estimates for critical fractional diffusion operators

Longjie Xie, Xicheng Zhang (2014)

Studia Mathematica

Similarity:

We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.

Potential spaces on fractals

Jiaxin Hu, Martina Zähle (2005)

Studia Mathematica

Similarity:

We introduce potential spaces on fractal metric spaces, investigate their embedding theorems, and derive various Besov spaces. Our starting point is that there exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the fractal considered.