The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Heat Kernel and Hard Estimates for Locally Euclidean Manifolds with Fractal Boundaries.”

Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays

Thierry Coulhon (1998)

Journées équations aux dérivées partielles

Similarity:

In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 - L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods....

Heat kernel estimates for critical fractional diffusion operators

Longjie Xie, Xicheng Zhang (2014)

Studia Mathematica

Similarity:

We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.

Potential spaces on fractals

Jiaxin Hu, Martina Zähle (2005)

Studia Mathematica

Similarity:

We introduce potential spaces on fractal metric spaces, investigate their embedding theorems, and derive various Besov spaces. Our starting point is that there exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the fractal considered.