Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays

Thierry Coulhon

Journées équations aux dérivées partielles (1998)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 - L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?

How to cite

top

Coulhon, Thierry. "Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays." Journées équations aux dérivées partielles (1998): 1-12. <http://eudml.org/doc/93359>.

@article{Coulhon1998,
abstract = {In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of $L^2$ isoperimetric profile. The main point is to connect the decay of the $L^1-L^\infty $ norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?},
author = {Coulhon, Thierry},
journal = {Journées équations aux dérivées partielles},
keywords = {upper estimates; lower estimates; rate of decay; complete noncompact Riemannian manifold; Poincaré type inequalities},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays},
url = {http://eudml.org/doc/93359},
year = {1998},
}

TY - JOUR
AU - Coulhon, Thierry
TI - Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays
JO - Journées équations aux dérivées partielles
PY - 1998
PB - Université de Nantes
SP - 1
EP - 12
AB - In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of $L^2$ isoperimetric profile. The main point is to connect the decay of the $L^1-L^\infty $ norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?
LA - eng
KW - upper estimates; lower estimates; rate of decay; complete noncompact Riemannian manifold; Poincaré type inequalities
UR - http://eudml.org/doc/93359
ER -

References

top
  1. [1] Bakry D., Coulhon T., Ledoux M., Saloff-Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. Zbl0857.26006MR97c:46039
  2. [2] Carron G., Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994. 
  3. [3] Carron G., Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. Zbl0884.58088MR97m:58198
  4. [4] Coulhon T., Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. Zbl0847.53022MR96i:53040
  5. [5] Coulhon T., Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. Zbl0859.58009MR97a:46040
  6. [6] Coulhon T., Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. Zbl0887.58009MR97j:47055
  7. [7] Coulhon T., Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. Zbl0903.58055MR99e:58175
  8. [8] Coulhon T., Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P. 
  9. [9] Coulhon T., Grigor'yan A., On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. Zbl0920.58064MR98e:58159
  10. [10] Coulhon T., Grigor'yan A., Manifolds with big heat kernels, preprint. 
  11. [11] Coulhon T., Ledoux M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. Zbl0826.53035MR95e:58170
  12. [12] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. Zbl0782.53066MR94g:58263
  13. [13] Coulhon T., Saloff-Coste L., Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. Zbl0845.58054MR96m:53035
  14. [14] Coulhon T., Saloff-Coste L., Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. Zbl1005.58013
  15. [15] Grigor'yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. Zbl0776.58035MR92h:58189
  16. [16] Grigor'yan A., Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. Zbl0810.58040MR96b:58107
  17. [17] Grigor'yan A., Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. Zbl0829.58041MR96f:58155
  18. [18] Pittet C., Saloff-Coste L., Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. Zbl0934.43001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.