Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays
Journées équations aux dérivées partielles (1998)
- page 1-12
 - ISSN: 0752-0360
 
Access Full Article
topAbstract
topHow to cite
topCoulhon, Thierry. "Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays." Journées équations aux dérivées partielles (1998): 1-12. <http://eudml.org/doc/93359>.
@article{Coulhon1998,
	abstract = {In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of $L^2$ isoperimetric profile. The main point is to connect the decay of the $L^1-L^\infty $ norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?},
	author = {Coulhon, Thierry},
	journal = {Journées équations aux dérivées partielles},
	keywords = {upper estimates; lower estimates; rate of decay; complete noncompact Riemannian manifold; Poincaré type inequalities},
	language = {eng},
	pages = {1-12},
	publisher = {Université de Nantes},
	title = {Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays},
	url = {http://eudml.org/doc/93359},
	year = {1998},
}
TY  - JOUR
AU  - Coulhon, Thierry
TI  - Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays
JO  - Journées équations aux dérivées partielles
PY  - 1998
PB  - Université de Nantes
SP  - 1
EP  - 12
AB  - In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of $L^2$ isoperimetric profile. The main point is to connect the decay of the $L^1-L^\infty $ norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?
LA  - eng
KW  - upper estimates; lower estimates; rate of decay; complete noncompact Riemannian manifold; Poincaré type inequalities
UR  - http://eudml.org/doc/93359
ER  - 
References
top- [1] Bakry D., Coulhon T., Ledoux M., Saloff-Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. Zbl0857.26006MR97c:46039
 - [2] Carron G., Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994.
 - [3] Carron G., Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. Zbl0884.58088MR97m:58198
 - [4] Coulhon T., Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. Zbl0847.53022MR96i:53040
 - [5] Coulhon T., Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. Zbl0859.58009MR97a:46040
 - [6] Coulhon T., Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. Zbl0887.58009MR97j:47055
 - [7] Coulhon T., Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. Zbl0903.58055MR99e:58175
 - [8] Coulhon T., Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P.
 - [9] Coulhon T., Grigor'yan A., On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. Zbl0920.58064MR98e:58159
 - [10] Coulhon T., Grigor'yan A., Manifolds with big heat kernels, preprint.
 - [11] Coulhon T., Ledoux M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. Zbl0826.53035MR95e:58170
 - [12] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. Zbl0782.53066MR94g:58263
 - [13] Coulhon T., Saloff-Coste L., Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. Zbl0845.58054MR96m:53035
 - [14] Coulhon T., Saloff-Coste L., Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. Zbl1005.58013
 - [15] Grigor'yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. Zbl0776.58035MR92h:58189
 - [16] Grigor'yan A., Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. Zbl0810.58040MR96b:58107
 - [17] Grigor'yan A., Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. Zbl0829.58041MR96f:58155
 - [18] Pittet C., Saloff-Coste L., Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. Zbl0934.43001
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.