Displaying similar documents to “Asymptotic Behaviour of Variable-Coefficient Toeplitz Determinants.”

Products of Toeplitz operators and Hankel operators

Yufeng Lu, Linghui Kong (2014)

Studia Mathematica


We first determine when the sum of products of Hankel and Toeplitz operators is equal to zero; then we characterize when the product of a Toeplitz operator and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz operator and when it is a finite rank perturbation of a Toeplitz operator.

Properties of two variables Toeplitz type operators

Elżbieta Król-Klimkowska, Marek Ptak (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica


The investigation of properties of generalized Toeplitz operators with respect to the pairs of doubly commuting contractions (the abstract analogue of classical two variable Toeplitz operators) is proceeded. We especially concentrate on the condition of existence such a non-zero operator. There are also presented conditions of analyticity of such an operator.

Deformation quantization and Borel's theorem in locally convex spaces

Miroslav Engliš, Jari Taskinen (2007)

Studia Mathematica


It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth...

Projections onto the spaces of Toeplitz operators

Marek Ptak (2005)

Annales Polonici Mathematici


Projections onto the spaces of all Toeplitz operators on the N-torus and the unit sphere are constructed. The constructions are also extended to generalized Toeplitz operators and applied to show hyperreflexivity results.

Asymmetric truncated Toeplitz operators equal to the zero operator

Joanna Jurasik, Bartosz Łanucha (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica


Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These operators are natural generalizations of truncated Toeplitz operators. In this paper we describe symbols of asymmetric truncated Toeplitz operators equal to the zero operator.

Positive Schatten class Toeplitz operators on the ball

Boo Rim Choe, Hyungwoon Koo, Young Joo Lee (2008)

Studia Mathematica


On the harmonic Bergman space of the ball, we give characterizations for an arbitrary positive Toeplitz operator to be a Schatten class operator in terms of averaging functions and Berezin transforms.