Ниль-идеалы йордановых тройных систем с условиями конечности.
А.В. Чехонадских (1985)
Sibirskij matematiceskij zurnal
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
А.В. Чехонадских (1985)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1985)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1984)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1982)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1983)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1986)
Sibirskij matematiceskij zurnal
Similarity:
В.Н. Желябин (1998)
Sibirskij matematiceskij zurnal
Similarity:
А.С. Штерн (1991)
Sibirskij matematiceskij zurnal
Similarity:
Е.И. Зельманов (1979)
Algebra i Logika
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
Antonio Fernández López (1988)
Collectanea Mathematica
Similarity:
A. Moreno Galindo (1997)
Studia Mathematica
Similarity:
For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on . This analytic determination of Jordan polynomials improves the one recently obtained in [5].