The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The product of n homogeneous forms”

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

Similarity:

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

Besov spaces on spaces of homogeneous type and fractals

Dachun Yang (2003)

Studia Mathematica

Similarity:

Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces B p q s ( Γ ) defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

Classifying homogeneous ultrametric spaces up to coarse equivalence

Taras Banakh, Dušan Repovš (2016)

Colloquium Mathematicae

Similarity:

For every metric space X we introduce two cardinal characteristics c o v ( X ) and c o v ( X ) describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if c o v ( X ) = c o v ( X ) = c o v ( Y ) = c o v ( Y ) . This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if c o v ( X ) = c o v ( X ) . Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and...