Displaying similar documents to “Volumes, feuilles de Rolle de feuilletages analytiques et théorème de Wilkie”

Homologie des ensembles semi-pfaffiens

Jean-Marie Lion, Jean-Philippe Rolin (1996)

Annales de l'institut Fourier

Similarity:

Un sous-ensemble pfaffien d’un ouvert semi-analytique M R n est une intersection finie d’ensembles semi-analytiques relativement compacts de R n et de feuilles non spiralantes de certains feuilletages analytiques de codimension 1 de M . Les sous-ensembles semi-pfaffiens de M sont les éléments de la plus petite classe de sous-ensembles de M contenant les sous-ensembles pfaffiens de M , stable par intersection finie, réunion finie et différence symétrique. Les ensembles T -pfaffiens sont les éléments...

Théorèmes de finitude pour les variétés pfaffiennes

Robert Moussu, Claude Roche (1992)

Annales de l'institut Fourier

Similarity:

On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.

Algèbres analytiques topologiquement noéthériennes. Théorie de Khovanskii

Jean-Claude Tougeron (1991)

Annales de l'institut Fourier

Similarity:

On étudie certaines algèbres de fonctions analytiques réelles définies sur un ouvert Ω de R n . La propriété principale de ces algèbres est que tout semi-analytique de Ω défini globalement à l’aide d’un nombre fini de fonctions de 𝒪 ( Ω ) , admet un nombre fini de composantes connexes. En reprenant les idées de Khovanskii (lemme de Rolle généralisé), on démontre que ces algèbres restent topologiquement noethériennes quand on leur adjoint les solutions de certaines équations différentielles du...