On braxtopes, a class of generalized simplices.
Bayer, Margaret M., Bisztriczky, Tibor (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Bayer, Margaret M., Bisztriczky, Tibor (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Lawrence, Jim, Soltan, Valeriu (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Marek Lassak (1984)
Fundamenta Mathematicae
Similarity:
W. Grabowski (1974)
Applicationes Mathematicae
Similarity:
Ehrhard Behrends (2000)
Studia Mathematica
Similarity:
The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads...
P. d'Alessandro, M. Dalla Mora (1988)
RAIRO - Operations Research - Recherche Opérationnelle
Similarity:
V. I. Oliker (1982)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Ebbe T. Poulsen (1961)
Annales de l'institut Fourier
Similarity:
L’article décrit la construction (dans l’espace de Hilbert ) d’un simplexe (terminologie de Choquet) compact qui est la fermeture de l’ensemble de ses points extrémaux.
Juan Francisco Verdegay-López, Serafín Moral (2001)
Mathware and Soft Computing
Similarity:
This paper studies the problem of marginalizing convex polytopes of probabilities represented by a set of constraints. This marginalization is obtained as a special case of projection on a specific subspace. An algorithm that projects a convex polytope on any subspace has been built and the expression of the subspace, where the projection must be made for obtaining the marginalization, has been calculated.