The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the weak L 1 space and singular measures”

Singular measures and the key of G.

Stephen M. Buckley, Paul MacManus (2000)

Publicacions Matemàtiques

Similarity:

We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.

Symmetric and Zygmund measures in several variables

Evgueni Doubtsov, Artur Nicolau (2002)

Annales de l’institut Fourier

Similarity:

Let ω : ( 0 , ) ( 0 , ) be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure μ n is called ω -Zygmund if there exists a positive constant C such that | μ ( Q + ) - μ ( Q - ) | C ω ( ( Q + ) ) | Q + | for any pair Q + , Q - n of adjacent cubes of the same size. Similarly, μ is called an ω - symmetric measure if there exists a positive constant C such that | μ ( Q + ) / μ ( Q - ) - 1 | C ω ( ( Q + ) ) for any pair Q + , Q - n of adjacent cubes of the same size, ( Q + ) = ( Q - ) < 1 . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic...

Weak-star continuous homomorphisms and a decomposition of orthogonal measures

B. J. Cole, Theodore W. Gamelin (1985)

Annales de l'institut Fourier

Similarity:

We consider the set S ( μ ) of complex-valued homomorphisms of a uniform algebra A which are weak-star continuous with respect to a fixed measure μ . The μ -parts of S ( μ ) are defined, and a decomposition theorem for measures in A L 1 ( μ ) is obtained, in which constituent summands are mutually absolutely continuous with respect to representing measures. The set S ( μ ) is studied for T -invariant algebras on compact subsets of the complex plane and also for the infinite polydisc algebra.

Conical measures and vector measures

Igor Kluvánek (1977)

Annales de l'institut Fourier

Similarity:

Every conical measure on a weak complete space E is represented as integration with respect to a σ -additive measure on the cylindrical σ -algebra in E . The connection between conical measures on E and E -valued measures gives then some sufficient conditions for the representing measure to be finite.

On the complexity of sums of Dirichlet measures

Sylvain Kahane (1993)

Annales de l'institut Fourier

Similarity:

Let M be the set of all Dirichlet measures on the unit circle. We prove that M + M is a non Borel analytic set for the weak* topology and that M + M is not norm-closed. More precisely, we prove that there is no weak* Borel set which separates M + M from D (or even L 0 ) , the set of all measures singular with respect to every measure in M . This extends results of Kaufman, Kechris and Lyons about D and H and gives many examples of non Borel analytic sets.