Symmetric and Zygmund measures in several variables
Evgueni Doubtsov[1]; Artur Nicolau[2]
- [1] St. Petersburg State University, Department of Mathematical analysis, Bibliotechnaya pl. 2, Staryi Petergof, 198904 St. Petersburg (Russie)
- [2] Universitat Autonoma de Barcelona, Departament de Matemàtiques, 08193 Bellaterra, Barcelona (Espagne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 153-177
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDoubtsov, Evgueni, and Nicolau, Artur. "Symmetric and Zygmund measures in several variables." Annales de l’institut Fourier 52.1 (2002): 153-177. <http://eudml.org/doc/115971>.
@article{Doubtsov2002,
abstract = {Let $\omega :(0,\infty )\rightarrow (0,\infty )$ be a gauge function satisfying certain mid
regularity conditions. A (signed) finite Borel measure $\mu \in \{\mathbb \{R\}\}^n$ is called
$\omega $-Zygmund if there exists a positive constant $C$ such that $\vert \mu (Q_\{+\})-
\mu (Q_\{-\})\vert \le C\omega (\ell (Q_\{+\}))\vert Q_\{+\}\vert $ for any pair $Q_+,Q_\{-\}\subset \{\mathbb \{R\}\}^n$ of adjacent cubes of the same size. Similarly, $\mu $ is called an $\omega $-
symmetric measure if there exists a positive constant $C$ such that $\vert \mu (Q_+)/\mu (Q_\{-\})-1\vert \le C\omega (\ell (Q_\{+\}))$ for any pair $Q_+,Q_\{-
\}\subset \{\mathbb \{R\}\}^n$ of adjacent cubes of the same size, $\ell (Q_\{+\})=\ell (Q_\{-\})<1$.
We characterize Zygmund and symmetric measures in terms of their harmonic extensions.
Also, we show that the quadratic condition $\int _0\omega ^2(t)t^\{-1\}dt<\infty $ governs
the existence of singular $\omega $-Zygmund ($\omega $-symmetric) measures. In the one-
dimensional case, the results are well known, but complex analysis techniques are used at
certain steps of the corresponding proofs.},
affiliation = {St. Petersburg State University, Department of Mathematical analysis, Bibliotechnaya pl. 2, Staryi Petergof, 198904 St. Petersburg (Russie); Universitat Autonoma de Barcelona, Departament de Matemàtiques, 08193 Bellaterra, Barcelona (Espagne)},
author = {Doubtsov, Evgueni, Nicolau, Artur},
journal = {Annales de l’institut Fourier},
keywords = {doubling measures; Zygmund measures; harmonic extensions; quadratic condition; symmetric measure},
language = {eng},
number = {1},
pages = {153-177},
publisher = {Association des Annales de l'Institut Fourier},
title = {Symmetric and Zygmund measures in several variables},
url = {http://eudml.org/doc/115971},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Doubtsov, Evgueni
AU - Nicolau, Artur
TI - Symmetric and Zygmund measures in several variables
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 153
EP - 177
AB - Let $\omega :(0,\infty )\rightarrow (0,\infty )$ be a gauge function satisfying certain mid
regularity conditions. A (signed) finite Borel measure $\mu \in {\mathbb {R}}^n$ is called
$\omega $-Zygmund if there exists a positive constant $C$ such that $\vert \mu (Q_{+})-
\mu (Q_{-})\vert \le C\omega (\ell (Q_{+}))\vert Q_{+}\vert $ for any pair $Q_+,Q_{-}\subset {\mathbb {R}}^n$ of adjacent cubes of the same size. Similarly, $\mu $ is called an $\omega $-
symmetric measure if there exists a positive constant $C$ such that $\vert \mu (Q_+)/\mu (Q_{-})-1\vert \le C\omega (\ell (Q_{+}))$ for any pair $Q_+,Q_{-
}\subset {\mathbb {R}}^n$ of adjacent cubes of the same size, $\ell (Q_{+})=\ell (Q_{-})<1$.
We characterize Zygmund and symmetric measures in terms of their harmonic extensions.
Also, we show that the quadratic condition $\int _0\omega ^2(t)t^{-1}dt<\infty $ governs
the existence of singular $\omega $-Zygmund ($\omega $-symmetric) measures. In the one-
dimensional case, the results are well known, but complex analysis techniques are used at
certain steps of the corresponding proofs.
LA - eng
KW - doubling measures; Zygmund measures; harmonic extensions; quadratic condition; symmetric measure
UR - http://eudml.org/doc/115971
ER -
References
top- A.B. Aleksandrov, J.M. Anderson, A. Nicolau, Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc. 79 (1999), 318-352 Zbl1085.46020MR1702245
- J.M. Anderson, J.L. Fernandez, A.L. Shields, Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc. 323 (1991), 429-448 Zbl0768.46003MR979966
- C. Bishop, Bounded functions in the little Bloch space, Pacific J. Math. 142 (1990), 209-225 Zbl0652.30024MR1042042
- J. Brossard, Intégrale d'aire et supports d'une mesure positive, C.R.A.S. Paris, Ser. I Math. 296 (1983), 231-232 Zbl0539.60038MR692984
- L. Carleson, On mappings, conformal at the boundary, J. d'Analyse Math. 19 (1967), 1-13 Zbl0186.13701MR215986
- J.J. Carmona, J. Donaire, On removable singularities for the analytic Zygmund class, Michigan Math. J. 43 (1996), 51-65 Zbl0862.30035MR1381599
- S.Y.A. Chang, J.M. Wilson, T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv. 60 (1985), 217-246 Zbl0575.42025MR800004
- J. Garcí a-Cuerva, J.L. Rubio, de Francia, Weighted Norm Inequalities and Related Topics, 116 (1985), North-Holland Zbl0578.46046MR807149
- P.L. Duren, H.S. Shapiro, A. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254 Zbl0174.37501MR199359
- R.A. Fefferman, C.E. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124 Zbl0770.35014MR1114608
- F.P. Gardiner, D.P. Sullivan, Symmetric structures on a closed curve, American J. Math. 114 (1992), 683-736 Zbl0778.30045MR1175689
- J.P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseignement Math. 15 (1969), 185-192 Zbl0175.33902MR245734
- J.G. Llorente, Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach, Potential Analysis 9 (1998), 229-260 Zbl0924.31004MR1666891
- N.G. Makarov, Probability methods in the theory of conformal mappings, Leningrad Math. J. 1 (1990), 1-56 Zbl0736.30006MR1015333
- G. Piranian, Two monotonic, singular, uniformly almost smooth functions, Duke Math. J. 33 (1966), 255-262 Zbl0143.07405MR199320
- W. Smith, Inner functions in the hyperbolic little Bloch class, Michigan Math. J. 45 (1998), 103-114 Zbl0976.30018MR1617418
- E. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.