The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I”

Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. II

Takashi Aoki (1986)

Annales de l'institut Fourier

Similarity:

Soit P un opérateur pseudodifférentiel (ou microdifférentiel) tel que exp P soit aussi un opérateur pseudodifférentiel. Alors le symbole de exp P s’ecrit exp q avec un symbole q . Pour la réciproque, si Q est un opérateur à symbole exp q , il existe un opérateur P tel que Q = exp P . Tous ces résultats reposent sur la théorie développée dans la Note I de cette série. Comme application, on obtient une condition suffisante d’inversibilité pour les opérateurs pseudodifférentiels d’ordre infini.

Régularité et suprarégularité pour une famille de germes dirichlétiens (par rapport à un support de référence)

Maurice Blambert, Jean Siméon (1969)

Annales de l'institut Fourier

Similarity:

Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs...