The Dirichlet problem for the biharmonic equation in a Lipschitz domain
Carlos E. Kenig (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Carlos E. Kenig (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Carlos E. Kenig (1983-1984)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Jang-Mei G. Wu (1978)
Annales de l'institut Fourier
Similarity:
On a Lipschitz domain in , three theorems on harmonic functions are proved. The first (boundary Harnack principle) compares two positive harmonic functions at interior points near an open subset of the boundary where both functions vanish. The second extends some familiar geometric facts about the Poisson kernel on a sphere to the Poisson kernel on . The third theorem, on non-tangential limits of quotient of two positive harmonic functions in , generalizes Doob’s relative Fatou...
Alano Ancona (1998)
Publicacions Matemàtiques
Similarity:
Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain Ω of R and having Lipschitz coefficients in Ω. It is shown that the Rellich formula with respect to Ω and L extends to all functions in the domain D = {u ∈ H (Ω); L(u) ∈ L(Ω)} of L. This answers a question of A. Chaïra and G. Lebeau.
Russell M. Brown, Zhongwei Shen (1992)
Revista Matemática Iberoamericana
Similarity:
We consider initial-boundary value problems for a parabolic system in a Lipschitz cylinder. When the space dimension is three, we obtain estimates for the solutions when the lateral data taken from the best possible range of L-spaces.
Björn Dahlbert (1979)
Studia Mathematica
Similarity:
Pascal Auscher, Philippe Tchamitchian (1999)
Publicacions Matemàtiques
Similarity:
We prove a commutator inequality of Littlewood-Paley type between partial derivatives and functions of the Laplacian on a Lipschitz domain which gives interior energy estimates for some BVP. It can be seen as an endpoint inequality for a family of energy estimates.
Ding Hua (1989)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity: