The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the structure of Brieskorn lattice”

Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)

Antoine Douai, Claude Sabbah (2003)

Annales de l’institut Fourier

Similarity:

We associate to any convenient nondegenerate Laurent polynomial f on the complex torus ( * ) n a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of f (or its universal unfolding) and of the corresponding Hodge theory.

Hodge numbers attached to a polynomial map

R. García López, A. Némethi (1999)

Annales de l'institut Fourier

Similarity:

We attach a limit mixed Hodge structure to any polynomial map f : n . The equivariant Hodge numbers of this mixed Hodge structure are invariants of f which reflect its asymptotic behaviour. We compute them for a generic class of polynomials in terms of equivariant Hodge numbers attached to isolated hypersurface singularities and equivariant Hodge numbers of cyclic coverings of projective space branched along a hypersurface. We show how these invariants allow to determine topological invariants...