Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)

Antoine Douai[1]; Claude Sabbah[2]

  • [1] Université de Nice, Laboratoire J.A. Dieudonné, UMR 6621 du CNRS, Parc Valrose, 06108 Nice Cedex 2 (France)
  • [2] École Polytechnique, Centre de mathématiques, 91128 Palaiseau Cedex (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1055-1116
  • ISSN: 0373-0956

Abstract

top
We associate to any convenient nondegenerate Laurent polynomial f on the complex torus ( * ) n a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of f (or its universal unfolding) and of the corresponding Hodge theory.

How to cite

top

Douai, Antoine, and Sabbah, Claude. "Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)." Annales de l’institut Fourier 53.4 (2003): 1055-1116. <http://eudml.org/doc/116062>.

@article{Douai2003,
abstract = {We associate to any convenient nondegenerate Laurent polynomial $f$ on the complex torus $(\{\mathbb \{C\}\}^*)^n$ a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of $f$ (or its universal unfolding) and of the corresponding Hodge theory.},
affiliation = {Université de Nice, Laboratoire J.A. Dieudonné, UMR 6621 du CNRS, Parc Valrose, 06108 Nice Cedex 2 (France); École Polytechnique, Centre de mathématiques, 91128 Palaiseau Cedex (France)},
author = {Douai, Antoine, Sabbah, Claude},
journal = {Annales de l’institut Fourier},
keywords = {Gauss-Manin system; Brieskorn lattice; Frobenius manifold; D-modules; Brieskorn lattices},
language = {eng},
number = {4},
pages = {1055-1116},
publisher = {Association des Annales de l'Institut Fourier},
title = {Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)},
url = {http://eudml.org/doc/116062},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Douai, Antoine
AU - Sabbah, Claude
TI - Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1055
EP - 1116
AB - We associate to any convenient nondegenerate Laurent polynomial $f$ on the complex torus $({\mathbb {C}}^*)^n$ a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of $f$ (or its universal unfolding) and of the corresponding Hodge theory.
LA - eng
KW - Gauss-Manin system; Brieskorn lattice; Frobenius manifold; D-modules; Brieskorn lattices
UR - http://eudml.org/doc/116062
ER -

References

top
  1. B. Abdel-Gadir, Applications of Grauert-Remmert A and B theorems, (1997) 
  2. B. Abdel-Gadir, On the Fourier analysis of holonomic 𝒟 -modules, (1997) 
  3. S. Barannikov, Semi-infinite Hodge structures and mirror symmetry for projective spaces, (2000) 
  4. A. Borel (ed.), Algebraic 𝒟 -modules, vol. 2 (1987), Academic Press, Boston Zbl0642.32001MR882000
  5. A. Borel, Algebraic 𝒟 -modules, Chap. VI-IX, 207-352 Zbl0642.32001
  6. L. Boutet de Monvel, A. Douady, J.-L. Verdier (eds.), Séminaire E.N.S. Mathématique et Physique, 37 (1983) 
  7. T. Brélivet, Topologie des polynômes, spectre et variance du spectre, (juin 2002) Zbl1032.32016
  8. J. Briançon, M. Granger, Ph. Maisonobe, M. Miniconi, Algorithme de calcul du polynôme de Bernstein: cas non dégénéré, Ann. Inst. Fourier 39 (1989), 553-610 Zbl0675.32008MR1030839
  9. E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161 Zbl0186.26101MR267607
  10. S. A. Broughton, Milnor number and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241 Zbl0658.32005MR936081
  11. R.-O. Buchweitz, G.-M. Greuel, Milnor number and deformation of complex curve singularities, Invent. Math. 58 (1980), 241-281 Zbl0458.32014MR571575
  12. P. Deligne, Équations différentielles à points singuliers réguliers, vol. 163 (1970), Springer-Verlag Zbl0244.14004MR417174
  13. A. Dimca, F. Maaref, C. Sabbah, M. Saito, Dwork cohomology and algebraic 𝒟 -modules, Math. Ann. 318 (2000), 107-125 Zbl0985.14007MR1785578
  14. A. Dimca, M. Saito, Algebraic Gauss-Manin systems and Brieskorn modules, Amer. J. Math. 123 (2001), 163-184 Zbl0990.14004MR1827281
  15. A. Douai, Très bonnes bases du réseau de Brieskorn d'un polynôme modéré, Bull. Soc. Math. France 127 (1999), 255-287 Zbl0935.32025MR1708647
  16. A. Douai, Notes sur les systèmes de Gauss-Manin algébriques et leurs transformés de Fourier, (2002) 
  17. A. Douai, C. Sabbah, Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II), (2002) Zbl1079.32017MR2115764
  18. B. Dubrovin, Geometry of 2D topological field theory, Integrable systems and quantum groups vol. 1260 (1996), 120-348, Springer-Verlag Zbl0841.58065
  19. F. El Zein, Théorie de Hodge des cycles évanescents, Ann. Sci. École Normale Sup., 4e série 19 (1986), 107-184 Zbl0538.14003MR860812
  20. A. Galligo, J.-M. Granger, Ph. Maisonobe (eds.), Systèmes différentiels et singularités, vol. 130 (1985), Soc. Math. France Zbl0559.00004MR804047
  21. M. Granger, Ph. Maisonobe, A basic course on differential modules, Éléments de la théorie des systèmes différentiels, 103-168 Zbl0853.32011
  22. C. Hertling, Frobenius manifolds and moduli spaces for singularities, vol. 151 (2002), Cambridge University Zbl1023.14018MR1924259
  23. C. Hertling, Yu.I. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), 277-286 Zbl0960.58003MR1680372
  24. K. Hori, C. Vafa, Mirror Symmetry, (2000) Zbl1044.14018
  25. M. Kashiwara, On the holonomic systems of differential equations II, Invent. Math. 49 (1978), 121-135 Zbl0401.32005MR511186
  26. B. Kaup, Coherent 𝒟 -modules, Algebraic -modules Chap. II, 109-127 
  27. A. Khovanskii, A.N. Varchenko, Asymptotics of integrals over vanishing cycles and the Newton polyhedron, Soviet Math. Dokl. 32 (1985), 122-127 Zbl0595.32012
  28. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31 Zbl0328.32007MR419433
  29. Ph. Maisonobe, C. Sabbah (eds.), Images directes et constructibilité, Les cours du CIMPA, Travaux en cours vol. 46 (1993), Hermann, Paris, Paris 
  30. Ph. Maisonobe, C. Sabbah (eds.), 𝒟 -modules cohérents et holonomes, Les cours du CIMPA, Travaux en cours vol. 45 (1993), Hermann, Paris 
  31. B. Malgrange, Le faisceau des opérateurs différentiels, Séminaire opérateurs différentiels (1975), Institut Fourier, Grenoble 
  32. B. Malgrange, Déformations de systèmes différentiels et microdifférentiels, Séminaire E.N.S. Mathématique et Physique, 351-379 Zbl0528.32016
  33. B. Malgrange, Deformations of differential systems II, J. Ramanujan Math. Soc. 1 (1986), 3-15 Zbl0687.32019MR945599
  34. B. Malgrange, Regular connexions after Deligne, Algebraic -modules Chap IV, 151-172 
  35. B. Malgrange, Équations différentielles à coefficients polynomiaux, vol. 96 (1991), Birkhäuser, Basel, Boston Zbl0764.32001MR1117227
  36. B. Malgrange, Filtration des modules holonomes, Analyse algébrique des perturbations singulières. Travaux en cours vol. 48, no 2 (1994), 35-41, Hermann, Paris Zbl0843.58115
  37. B. Malgrange, Connexions méromorphes II: le réseau canonique, Invent. Math. 124 (1996), 367-387 Zbl0849.32003MR1369422
  38. B. Malgrange, On the extension of holonomic systems, Structure of solutions of differential equations, Katata-Kyoto 1995 (1996), 279-285, World Sci. Publishing Zbl0908.32004
  39. Yu.I. Manin, Frobenius manifolds, quantum cohomology and moduli spaces, vol. 47 (1999), Amer. Math. Society Zbl0952.14032
  40. Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les 𝒟 -modules cohérents, Travaux en cours, vol. 35 (1989), Hermann, Paris Zbl0686.14020MR1008245
  41. Z. Mebkhout, Le théorème de comparaison entre cohomologies de de Rham d'une variété algébrique complexe et le théorème d'existence de Riemann, Publ. Math. I.H.E.S. 69 (1989), 47-89 Zbl0709.14015MR1019961
  42. Z. Mebkhout, L. Narváez-Macarro, Le théorème de constructibilité de Kashiwara, Éléments de la théorie des systèmes différentiels, 47-98 Zbl0847.32012
  43. Z. Mebkhout, C. Sabbah, 𝒟 -modules et cycles évanescents, Le formalisme des six opérations de Grothendieck pour les -modules cohérents Chap. III.4, 201-239 
  44. A. Némethi, C. Sabbah, Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg 69 (1999), 25-35 Zbl0973.32014MR1722919
  45. A. Némethi, A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, Publ. RIMS, Kyoto Univ. 26 (1990), 681-689 Zbl0736.32024MR1081511
  46. T. Oda, K. Saito's period map for holomorphic functions with isolated singularities, Algebraic Geometry, Sendai 1985 10 (1987), 591-648 Zbl0643.32005
  47. F. Pham, Singularités des systèmes de Gauss-Manin, vol. 2 (1980), Birkhäuser, Basel, Boston 
  48. F. Pham, Vanishing homologies and the n variable saddlepoint method, Singularities vol. 40 (1983), 319-333, Amer. Math. Soc. Zbl0519.49026
  49. F. Pham, La descente des cols par les onglets de Lefschetz avec vues sur Gauss-Manin, Systèmes différentiels et singularités, 11-47 Zbl0597.32012
  50. C. Sabbah, Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings, Expo. Math. 16 (1998), 1-58 Zbl0904.32009MR1617534
  51. C. Sabbah, Monodromy at infinity and Fourier transform, Publ. RIMS, Kyoto Univ. 33 (1998), 643-685 Zbl0920.14003MR1489993
  52. C. Sabbah, Hypergeometric period for a tame polynomial, C.R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 603-608 Zbl0967.32028MR1679978
  53. C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, vol. 263 (2000), Soc. Math. France, Paris Zbl0947.32005MR1741802
  54. C. Sabbah, Déformations isomonodromiques et variétés de Frobenius, (2002), CNRS Éditions & EDP Sciences, Paris Zbl1101.14001MR1933784
  55. K. Saito, The higher residue pairings K F ( k ) for a family of hypersurfaces singular points, Singularities vol. 40 (1983), 441-463, Amer. Math. Soc. Zbl0565.32005
  56. K. Saito, Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ. 19 (1983), 1231-1264 Zbl0539.58003MR723468
  57. M. Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann. 281 (1988), 411-417 Zbl0628.32038MR954149
  58. M. Saito, On the structure of Brieskorn lattices, Ann. Inst. Fourier 39 (1989), 27-72 Zbl0644.32005MR1011977
  59. M. Saito, Mixed Hodge Modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221-333 Zbl0727.14004MR1047415
  60. M. Saito, Period mapping via Brieskorn modules, Bull. Soc. Math. France 119 (1991), 141-171 Zbl0760.32009MR1116843
  61. P. Schapira, Microdifferential systems in the complex domain, vol. 269 (1985), Springer-Verlag Zbl0554.32022MR774228
  62. P. Schapira, J.-P. Schneiders, Index theorem for elliptic pairs, vol. 224 (1994), Soc. Math. France, Paris Zbl0856.58037
  63. J. Scherk, J.H.M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fiber, Math. Ann. 271 (1985), 641-655 Zbl0618.14002MR790119
  64. J.H.M. Steenbrink, S. Zucker, Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489-542 Zbl0626.14007MR791673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.