Displaying similar documents to “Extensions of certain real rank zero C * -algebras”

Notes on a class of simple C*-algebras with real rank zero.

Kenneth R. Goodearl (1992)

Publicacions Matemàtiques

Similarity:

A construction method is presented for a class of simple C*-algebras whose basic properties -including their real ranks- can be computed relatively easily, using linear algebra. A numerival invariant attached to the construction determines wether a given algebra has real rank 0 or 1. Moreover, these algebras all have stable rank 1, and each nonzero hereditary sub-C*-algebra contains a nonzero projection, yet there are examples in which the linear span of the projections is not dense....

Unital extensions of A F -algebras by purely infinite simple algebras

Junping Liu, Changguo Wei (2014)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we consider the classification of unital extensions of A F -algebras by their six-term exact sequences in K -theory. Using the classification theory of C * -algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of A F -algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of A F -algebras by stable purely infinite simple C * -algebras...

A double commutant theorem for purely large C*-subalgebras of real rank zero corona algebras

P. W. Ng (2009)

Studia Mathematica

Similarity:

Let 𝓐 be a unital separable simple nuclear C*-algebra such that ℳ (𝓐 ⊗ 𝓚) has real rank zero. Suppose that ℂ is a separable simple liftable and purely large unital C*-subalgebra of ℳ (𝓐 ⊗ 𝓚)/ (𝓐 ⊗ 𝓚). Then the relative double commutant of ℂ in ℳ (𝓐 ⊗ 𝓚)/(𝓐 ⊗ 𝓚) is equal to ℂ.