Displaying similar documents to “The center of a graded connected Lie algebra is a nice ideal”

Knit products of graded Lie algebras and groups

Michor, Peter W.

Similarity:

Let A = k A k and B = k B k be graded Lie algebras whose grading is in 𝒵 or 𝒵 2 , but only one of them. Suppose that ( α , β ) is a derivatively knitted pair of representations for ( A , B ) , i.e. α and β satisfy equations which look “derivatively knitted"; then A B : = k , l ( A k B l ) , endowed with a suitable bracket, which mimics semidirect products on both sides, becomes a graded Lie algebra A ( α , β ) B . This graded Lie algebra is called the knit product of A and B . The author investigates the general situation for any graded Lie subalgebras A and...

On the homology of free Lie algebras

Calin Popescu (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a principal ideal domain R of characteristic zero, containing 1 / 2 , and a connected differential non-negatively graded free finite type R -module V , we prove that the natural arrow 𝕃 F H ( V ) F H 𝕃 ( V ) is an isomorphism of graded Lie algebras over R , and deduce thereby that the natural arrow U F H 𝕃 ( V ) F H U 𝕃 ( V ) is an isomorphism of graded cocommutative Hopf algebras over R ; as usual, F stands for free part, H for homology, 𝕃 for free Lie algebra, and U for universal enveloping algebra. Related facts and examples are also...

Characteristic zero loop space homology for certain two-cones

Calin Popescu (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a principal ideal domain R of characteristic zero, containing 1/2, and a two-cone X of appropriate connectedness and dimension, we present a sufficient algebraic condition, in terms of Adams-Hilton models, for the Hopf algebra F H ( Ω X ; R ) to be isomorphic with the universal enveloping algebra of some R -free graded Lie algebra; as usual, F stands for free part, H for homology, and Ω for the Moore loop space functor.