The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Simplicity of Neretin's group of spheromorphisms”

Multi-faithful spanning trees of infinite graphs

Norbert Polat (2001)

Czechoslovak Mathematical Journal

Similarity:

For an end τ and a tree T of a graph G we denote respectively by m ( τ ) and m T ( τ ) the maximum numbers of pairwise disjoint rays of G and T belonging to τ , and we define t m ( τ ) : = min { m T ( τ ) T is a spanning tree of G } . In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function f mapping every end τ of G to a cardinal f ( τ ) such that t m ( τ ) f ( τ ) m ( τ ) , there exists a spanning tree T of G such that m T ( τ ) = f ( τ ) for every end τ of G .

Pressing Down Lemma for λ -trees and its applications

Hui Li, Liang-Xue Peng (2013)

Czechoslovak Mathematical Journal

Similarity:

For any ordinal λ of uncountable cofinality, a λ -tree is a tree T of height λ such that | T α | < cf ( λ ) for each α < λ , where T α = { x T : ht ( x ) = α } . In this note we get a Pressing Down Lemma for λ -trees and discuss some of its applications. We show that if η is an uncountable ordinal and T is a Hausdorff tree of height η such that | T α | ω for each α < η , then the tree T is collectionwise Hausdorff if and only if for each antichain C T and for each limit ordinal α η with cf ( α ) > ω , { ht ( c ) : c C } α is not stationary in α . In the last part of this note, we investigate...

The triangles method to build X -trees from incomplete distance matrices

Alain Guénoche, Bruno Leclerc (2001)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

A method to infer X -trees (valued trees having X as set of leaves) from incomplete distance arrays (where some entries are uncertain or unknown) is described. It allows us to build an unrooted tree using only 2 n -3 distance values between the n elements of X , if they fulfill some explicit conditions. This construction is based on the mapping between X -tree and a weighted generalized 2-tree spanning X .

Spanning caterpillars with bounded diameter

Ralph Faudree, Ronald Gould, Michael Jacobson, Linda Lesniak (1995)

Discussiones Mathematicae Graph Theory

Similarity:

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove...

A remark on branch weights in countable trees

Bohdan Zelinka (2004)

Mathematica Bohemica

Similarity:

Let T be a tree, let u be its vertex. The branch weight b ( u ) of u is the maximum number of vertices of a branch of T at u . The set of vertices u of T in which b ( u ) attains its minimum is the branch weight centroid B ( T ) of T . For finite trees the present author proved that B ( T ) coincides with the median of T , therefore it consists of one vertex or of two adjacent vertices. In this paper we show that for infinite countable trees the situation is quite different.