Infinite dimensional Lie algebras: representations and applications
Goddard, P.
Similarity:
Goddard, P.
Similarity:
Stephen Gelbart (1971-1973)
Séminaire Choquet. Initiation à l'analyse
Similarity:
Şochichiu, Corneliu (2009)
APPS. Applied Sciences
Similarity:
N. I. Stoilova, J. Van der Jeugt (2011)
Banach Center Publications
Similarity:
An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations...
L. C. Biedenharn, J. Nuyts, N. Straumann (1965)
Annales de l'I.H.P. Physique théorique
Similarity:
Hanna, L. A.-M. (2003)
Journal of Applied Mathematics
Similarity:
Stephen M. Paneitz (1984)
Annales de l'I.H.P. Physique théorique
Similarity: