Expansion of inhomogenizations of all the classical Lie algebras to classical Lie algebras
John G. Nagel (1970)
Annales de l'I.H.P. Physique théorique
Similarity:
John G. Nagel (1970)
Annales de l'I.H.P. Physique théorique
Similarity:
Y. Kosmann-Schwarzbach, F. Magri (1988)
Annales de l'I.H.P. Physique théorique
Similarity:
Baguis, P., Stavracou, T. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Georges Giraud, Michel Boyom (2004)
Open Mathematics
Similarity:
We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.
Hernández, I., Peniche, R. (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Chloup, Véronique (1995)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Similarity:
Sitarz, Andrzej, Zgliczyński, Piotr (1996)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
Kamran, Niky, Robart, Thierry (2001)
Journal of Lie Theory
Similarity:
Kenny De Commer (2015)
Banach Center Publications
Similarity:
On the level of Lie algebras, the contraction procedure is a method to create a new Lie algebra from a given Lie algebra by rescaling generators and letting the scaling parameter tend to zero. One of the most well-known examples is the contraction from 𝔰𝔲(2) to 𝔢(2), the Lie algebra of upper-triangular matrices with zero trace and purely imaginary diagonal. In this paper, we will consider an extension of this contraction by taking also into consideration the natural bialgebra structures...
Jan Kubarski (1991)
Revista Matemática de la Universidad Complutense de Madrid
Similarity: