Truncated Lie groups and almost Klein models

Georges Giraud; Michel Boyom

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 884-898
  • ISSN: 2391-5455

Abstract

top
We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.

How to cite

top

Georges Giraud, and Michel Boyom. "Truncated Lie groups and almost Klein models." Open Mathematics 2.5 (2004): 884-898. <http://eudml.org/doc/268704>.

@article{GeorgesGiraud2004,
abstract = {We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.},
author = {Georges Giraud, Michel Boyom},
journal = {Open Mathematics},
keywords = {Primary: 54H15, 57S20; Secondary: 22E15, 22E20, 58H10},
language = {eng},
number = {5},
pages = {884-898},
title = {Truncated Lie groups and almost Klein models},
url = {http://eudml.org/doc/268704},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Georges Giraud
AU - Michel Boyom
TI - Truncated Lie groups and almost Klein models
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 884
EP - 898
AB - We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.
LA - eng
KW - Primary: 54H15, 57S20; Secondary: 22E15, 22E20, 58H10
UR - http://eudml.org/doc/268704
ER -

References

top
  1. [1] D. Bernard: “Sur la géométrie différentielle des G-structures”, Ann. Institut Fourier, Vol. 10, (1960), pp. 151–270. Zbl0095.36406
  2. [2] C. Chevalley and Eilenberg: “The cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., VOl. 63, (1948), pp. 85–124. http://dx.doi.org/10.2307/1990637 Zbl0031.24803
  3. [3] C. Fredfield: “A conjecture concerning transitive subalgebra of Lie algebras”, Bull of the Amer. Math. Soc., Vol. 76, (1970), pp. 331–333. 
  4. [4] V.W. Guillemin, S. Sternberg: “An algebraic model for transitive differential geometry”, Bull of the Amer. Math. Soc., Vol. 70, (1964), pp. 16–47. http://dx.doi.org/10.1090/S0002-9904-1964-11019-3 Zbl0121.38801
  5. [5] I. Hayashi: “Embedding and existence theorem of infinite Lie algebras”, J. of Math. Soc. of Japan, Vol. 22, (1970), pp. 1–14. http://dx.doi.org/10.2969/jmsj/02210001 Zbl0182.36402
  6. [6] S. Kobayashi, K. Nagano: “Filtred Lie algebras and geometric structures III”, J. of Math. and Mech., Vol. 14, (1965), pp. 679–706. Zbl0163.28103
  7. [7] J.L. Koszul: “Multiplicateurs et classes caractéristiques”, Trans. Amer. Math. Soc., Vol. 89, (1958), pp. 256–266. http://dx.doi.org/10.2307/1993142 Zbl0097.38803
  8. [8] M. Nguiffo Boyom: “Déformations des structures d'algèbre de Lie tronquée”, CRAS Paris, Vol. 273, (1973), pp. 859–862. Zbl0264.17004
  9. [9] M. Nguiffo Boyom: “Weakley maximal submodules of some S(V)-modules, Geometric applications”, Indaga Math., Vol. 1, (1990), pp. 179–200. http://dx.doi.org/10.1016/0019-3577(90)90004-7 
  10. [10] A. Nijenhuis: “Deformations of Lie algebra structures”, J. Math. and Mech., Vol. 17, (1967), pp. 89–106. Zbl0166.30202
  11. [11] A.L. Onishchik (ed.) Lie groups and Lie algebras I. Foundations of Lie theory. Lie transformation groups. in Encyclopaedia of Mathematical Sciences. Vol. 20, Springer-Verlag. Berlin, 1993. 
  12. [12] R.S. Palais: “Global formulation of the Lie transformation groups”, Mem Amer. Math. Soc., Vol. 22, pp. 178–265. 
  13. [13] I.M. Singer and S. Sternberg: “The infinite groups of Lie and Cartan”, Jour. Analyse Math. Jerusalem, Vol. 15, (1965), pp. 1–114. Zbl0277.58008
  14. [14] J.A. Wolf: Spaces of constant curvature, 3rd ed., Mass.: Publish Perish, Inc. XV, Boston, 1974. 
  15. [15] J.A. Wolf: “The geometry and structure of isotropic irreducible homogeneous spaces”, Acta Math., Vol. 120, (1968), pp. 59–148. http://dx.doi.org/10.1007/BF02394607 Zbl0157.52102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.