The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Program”

Physical measures for infinite-modal maps

Vítor Araújo, Maria José Pacifico (2009)

Fundamenta Mathematicae

Similarity:

We analyze certain parametrized families of one-dimensional maps with infinitely many critical points from the measure-theoretical point of view. We prove that such families have absolutely continuous invariant probability measures for a positive Lebesgue measure subset of parameters. Moreover, we show that both the density of such a measure and its entropy vary continuously with the parameter. In addition, we obtain exponential rate of mixing for these measures and also show that they...

Julia and John revisited

Nicolae Mihalache (2011)

Fundamenta Mathematicae

Similarity:

We show that the Fatou components of a semi-hyperbolic rational map are John domains. The converse does not hold. This compares to a famous result of Carleson, Jones and Yoccoz for polynomials, in which case the two conditions are equivalent. We show that a connected Julia set is locally connected for a large class of non-uniformly hyperbolic rational maps. This class is more general than semi-hyperbolicity and includes Collet-Eckmann maps, topological Collet-Eckmann...

Perturbations of flexible Lattès maps

Xavier Buff, Thomas Gauthier (2013)

Bulletin de la Société Mathématique de France

Similarity:

We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.

Normal points for generic hyperbolic maps

Mark Pollicott (2009)

Fundamenta Mathematicae

Similarity:

We consider families of hyperbolic maps and describe conditions for a fixed reference point to have its orbit evenly distributed for maps corresponding to generic parameter values.

Hyperbolicity in a class of one-dimensional maps.

Gregory J. Davis (1990)

Publicacions Matemàtiques

Similarity:

In this paper we provide a direct proof of hyperbolicity for a class of one-dimensional maps on the unit interval. The maps studied are degenerate forms of the standard quadratic map on the interval. These maps are important in understanding the Newhouse theory of infinitely many sinks due to homoclinic tangencies in two dimensions.

Inhomogeneities in non-hyperbolic one-dimensional invariant sets

Brian E. Raines (2004)

Fundamenta Mathematicae

Similarity:

The topology of one-dimensional invariant sets (attractors) is of great interest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering sets can be represented as inverse limits of graphs with bonding maps that satisfy certain strong dynamical properties. These spaces have "homogeneous neighborhoods" in the sense that small open sets are homeomorphic to the product of a Cantor set and an arc. In this paper we examine inverse limits of graphs with more complicated...