Central limit theorems for the products of random matrices sampled by a random walk.
Duheille-Bienvenüe, Frédérique, Guillotin-Plantard, Nadine (2003)
Electronic Communications in Probability [electronic only]
Similarity:
Duheille-Bienvenüe, Frédérique, Guillotin-Plantard, Nadine (2003)
Electronic Communications in Probability [electronic only]
Similarity:
Dalal, Avinash, Schmutz, Eric (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
F. den Hollander, R. S. dos Santos (2014)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the...
François Simenhaus (2007)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Bérard, Jean, Ramirez, Alejandro (2007)
Electronic Communications in Probability [electronic only]
Similarity:
Carlo Boldrighini, Robert A. Minlos, Alessandro Pellegrinotti (1994)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Berestycki, Nathanael, Durrett, Rick (2008)
Electronic Journal of Probability [electronic only]
Similarity:
Lawler, Gregory F., Limic, Vlada (2004)
Electronic Journal of Probability [electronic only]
Similarity:
Dolgopyat, Dmitry, Liverani, Carlangelo (2009)
Electronic Communications in Probability [electronic only]
Similarity:
Hildebrand, Martin (2005)
Probability Surveys [electronic only]
Similarity: