The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. II. Expansion”

Limit laws of transient excited random walks on integers

Elena Kosygina, Thomas Mountford (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, , is larger than 1 then ERW is transient to the right and, moreover, for >4 under the averaged measure it obeys the Central Limit Theorem. We show that when ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited...

A stochastic min-driven coalescence process and its hydrodynamical limit

Anne-Laure Basdevant, Philippe Laurençot, James R. Norris, Clément Rau (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.