Displaying similar documents to “On suprema of Lévy processes and application in risk theory”

Refracted Lévy processes

A. E. Kyprianou, R. L. Loeffen (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation d =− { ...

Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes

Patie Pierre (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any , >0, ≥0 and a smooth function on + , 𝐋 ( γ ) f ( x ) = x - α ( σ 2 x 2 f ' ' ( x ) + ( σ γ + b ) x f ' ( x ) + 0 f e - r x - f ( x ) e - r γ + x f ' ( x ) r 𝕀 { r 1 } ν ( d r ) ) , ( 0 . 1 ) where the coefficients b ,≥0 and the measure , which satisfies the integrability condition (1∧ )(d)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent . ...

Small-time behavior of beta coalescents

Julien Berestycki, Nathanaël Berestycki, Jason Schweinsberg (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

For a finite measure on [0, 1], the -coalescent is a coalescent process such that, whenever there are clusters, each -tuple of clusters merges into one at rate (1−) (d). It has recently been shown that if 1<<2, the -coalescent in which is the Beta (2−, ) distribution can be used to describe the genealogy of a continuous-state branching process (CSBP) with an -stable branching mechanism. Here...

A Ciesielski–Taylor type identity for positive self-similar Markov processes

A. E. Kyprianou, P. Patie (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The aim of this note is to give a straightforward proof of a general version of the Ciesielski–Taylor identity for positive self-similar Markov processes of the spectrally negative type which umbrellas all previously known Ciesielski–Taylor identities within the latter class. The approach makes use of three fundamental features. Firstly, a new transformation which maps a subset of the family of Laplace exponents of spectrally negative Lévy processes into itself. Secondly, some classical...