The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Poisson convergence for the largest eigenvalues of heavy tailed random matrices”

Limit laws of transient excited random walks on integers

Elena Kosygina, Thomas Mountford (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, , is larger than 1 then ERW is transient to the right and, moreover, for >4 under the averaged measure it obeys the Central Limit Theorem. We show that when ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited...

One-dimensional finite range random walk in random medium and invariant measure equation

Julien Brémont (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a model of random walks on ℤ with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce...

Transience/recurrence and the speed of a one-dimensional random walk in a “have your cookie and eat it” environment

Ross G. Pinsky (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Consider a variant of the simple random walk on the integers, with the following transition mechanism. At each site , the probability of jumping to the right is ()∈[½, 1), until the first time the process jumps to the left from site , from which time onward the probability of jumping to the right is ½. We investigate the transience/recurrence properties of this process in both deterministic and stationary, ergodic environments {()}∈. In deterministic environments, we also study the speed...