A log-scale limit theorem for one-dimensional random walks in random environments.
Roitershtein, Alexander (2005)
Electronic Communications in Probability [electronic only]
Similarity:
Roitershtein, Alexander (2005)
Electronic Communications in Probability [electronic only]
Similarity:
Zhou, Xing-Cai, Lin, Jin-Guan (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Gao, F., Hannig, J., Torcaso, F. (2003)
Electronic Journal of Probability [electronic only]
Similarity:
Bérard, Jean, Ramirez, Alejandro (2007)
Electronic Communications in Probability [electronic only]
Similarity:
Vladas Sidoravicius, Alain-Sol Sznitman (2010)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The model of random interlacements on ℤ, ≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter parametrizes the density of random interlacements on ℤ. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level , in the non-percolative regime >∗, with ∗ the non-degenerate critical parameter for the percolation...
Guillotin-Plantard, Nadine, Le Ny, Arnaud (2008)
Electronic Communications in Probability [electronic only]
Similarity:
Adler, André, Rosalsky, Andrew (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Amini, D. M., Bozorgnia, A. (2003)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Taylor, R.L., Patterson, R.F., Bozorgnia, A. (2001)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Adler, Andre, Rosalsky, Andrew, Taylor, Robert L. (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Sung, Soo Hak (2009)
Journal of Inequalities and Applications [electronic only]
Similarity: