Displaying similar documents to “A probabilistic ergodic decomposition result”

Ergodic theorems in fully symmetric spaces of τ-measurable operators

Vladimir Chilin, Semyon Litvinov (2015)

Studia Mathematica

Similarity:

Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative L p -spaces, 1 < p < ∞, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative L p -spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these...

Pointwise convergence for subsequences of weighted averages

Patrick LaVictoire (2011)

Colloquium Mathematicae

Similarity:

We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence n k such that the weighted ergodic averages corresponding to μ n k satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions,...

Strongly mixing sequences of measure preserving transformations

Ehrhard Behrends, Jörg Schmeling (2001)

Czechoslovak Mathematical Journal

Similarity:

We call a sequence ( T n ) of measure preserving transformations strongly mixing if P ( T n - 1 A B ) tends to P ( A ) P ( B ) for arbitrary measurable A , B . We investigate whether one can pass to a suitable subsequence ( T n k ) such that 1 K k = 1 K f ( T n k ) f d P almost surely for all (or “many”) integrable f .

Ergodic transforms associated to general averages

H. Aimar, A. L. Bernardis, F. J. Martín-Reyes (2010)

Studia Mathematica

Similarity:

Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in L p , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in L p . For p = 1 we find that the...

Hamiltonian loops from the ergodic point of view

Leonid Polterovich (1999)

Journal of the European Mathematical Society

Similarity:

Let G be the group of Hamiltonian diffeomorphisms of a closed symplectic manifold Y . A loop h : S 1 G is called strictly ergodic if for some irrational number the associated skew product map T : S 1 × Y S 1 × Y defined by T ( t , y ) = ( t + α ; h ( t ) y ) is strictly ergodic. In the present paper we address the following question. Which elements of the fundamental group of G can be represented by strictly ergodic loops? We prove existence of contractible strictly ergodic loops for a wide class of symplectic manifolds (for instance for simply...

JOP's counting function and Jones' square function

Karin Reinhold (2006)

Studia Mathematica

Similarity:

We study a class of square functions in a general framework with applications to a variety of situations: samples along subsequences, averages of d actions and of positive L¹ contractions. We also study the relationship between a counting function first introduced by Jamison, Orey and Pruitt, in a variety of situations, and the corresponding ergodic averages. We show that the maximal counting function is not dominated by the square functions.

Mixing via families for measure preserving transformations

Rui Kuang, Xiangdong Ye (2008)

Colloquium Mathematicae

Similarity:

In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any...

Weighted L spaces and pointwise ergodic theorems.

Ryotaro Sato (1995)

Publicacions Matemàtiques

Similarity:

In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in Lp. We consider a positive conservative contraction T on L1 of a σ-finite measure space (X, F, μ), a fixed function e in L1 with

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...

Spectral decompositions, ergodic averages, and the Hilbert transform

Earl Berkson, T. A. Gillespie (2001)

Studia Mathematica

Similarity:

Let U be a trigonometrically well-bounded operator on a Banach space , and denote by ( U ) n = 1 the sequence of (C,2) weighted discrete ergodic averages of U, that is, ( U ) = 1 / n 0 < | k | n ( 1 - | k | / ( n + 1 ) ) U k . We show that this sequence ( U ) n = 1 of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral...

Positive L¹ operators associated with nonsingular mappings and an example of E. Hille

Isaac Kornfeld, Wojciech Kosek (2003)

Colloquium Mathematicae

Similarity:

E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, | | T | | n 1 / 4 ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with l i m n | | T | | / n 1 - γ = . I n t h e c l a s s o f p o s i t i v e o p e r a t o r s t h e s e e x a m p l e s a r e t h e b e s t p o s s i b l e i n t h e s e n s e t h a t f o r e v e r y s u c h o p e r a t o r T t h e r e e x i s t s a γ > 0 s u c h t h a t lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0 . A class of numerical sequences αₙ, intimately...

Weak almost periodicity of L 1 contractions and coboundaries of non-singular transformations

Isaac Kornfeld, Michael Lin (2000)

Studia Mathematica

Similarity:

It is well known that a weakly almost periodic operator T in a Banach space is mean ergodic, and in the complex case, also λT is mean ergodic for every |λ|=1. We prove that a positive contraction on L 1 is weakly almost periodic if (and only if) it is mean ergodic. An example shows that without positivity the result is false. In order to construct a contraction T on a complex L 1 such that λT is mean ergodic whenever |λ|=1, but T is not weakly almost periodic, we prove the following: Let...

Dispersing cocycles and mixing flows under functions

Klaus Schmidt (2002)

Fundamenta Mathematicae

Similarity:

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This...

Vector-valued ergodic theorems for multiparameter additive processes

Ryotaro Sato (1999)

Colloquium Mathematicae

Similarity:

Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=( u 1 , ... , u d ) , u i ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on L 1 ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on L 1 ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ L 1 ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems...

Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in L p

Christophe Cuny (2011)

Colloquium Mathematicae

Similarity:

We show that some results of Gaposhkin about a.e. convergence of series associated to a unitary operator U acting on L²(X,Σ,μ) (μ is a σ-finite measure) may be extended to the case where U is an invertible power-bounded operator acting on L p ( X , Σ , μ ) , p > 1. The proofs make use of the spectral integration initiated by Berkson-Gillespie and, more specifically, of recent results of the author.

A new kind of augmentation of filtrations

Joseph Najnudel, Ashkan Nikeghbali (2011)

ESAIM: Probability and Statistics

Similarity:

Let (Ω, , ( t ), ) be a filtered probability space satisfying the usual assumptions: it is usually not possible to extend to (the-algebra generated by ( t )) a coherent family of probability measures ( t ) indexed by , each of them being defined on t . It is known that for instance, on the Wiener space, this extension problem has a positive answer if one takes the filtration generated by the coordinate process, made right-continuous, but can have a negative...

Infinite measure preserving flows with infinite ergodic index

Alexandre I. Danilenko, Anton V. Solomko (2009)

Colloquium Mathematicae

Similarity:

We construct a rank-one infinite measure preserving flow ( T r ) r such that for each p > 0, the “diagonal” flow ( T r × × T r ) r ( p t i m e s ) on the product space is ergodic.

Example of a mean ergodic L¹ operator with the linear rate of growth

Wojciech Kosek (2011)

Colloquium Mathematicae

Similarity:

The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with l i m n | | T | | / n 1 - γ = . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that l i m s u p | | T | | / n 1 - γ = 0 . In this note we construct an example of a nonpositive L¹ operator with the...

Spectral theory and operator ergodic theory on super-reflexive Banach spaces

Earl Berkson (2010)

Studia Mathematica

Similarity:

On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that s u p n , z | | 0 < | k | n ( 1 - | k | / ( n + 1 ) ) k - 1 z k U k | | < . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with...