A note on nuclei of quantale modules

J. Paseka

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2002)

  • Volume: 43, Issue: 1, page 19-34
  • ISSN: 1245-530X

How to cite

top

Paseka, J.. "A note on nuclei of quantale modules." Cahiers de Topologie et Géométrie Différentielle Catégoriques 43.1 (2002): 19-34. <http://eudml.org/doc/91651>.

@article{Paseka2002,
author = {Paseka, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {quantale; module over a quantale; quotient},
language = {eng},
number = {1},
pages = {19-34},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A note on nuclei of quantale modules},
url = {http://eudml.org/doc/91651},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Paseka, J.
TI - A note on nuclei of quantale modules
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2002
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 43
IS - 1
SP - 19
EP - 34
LA - eng
KW - quantale; module over a quantale; quotient
UR - http://eudml.org/doc/91651
ER -

References

top
  1. [1] S. Abramsky, S. Vickers, Quantales, observational logic and process semantics, Math.Struct. in Comp. Science, 3 (1993) 161-227. Zbl0823.06011MR1224222
  2. [2] B. Banaschewski, Another look at the localic Tychonoff theorem, Comm. Math. Univ. Carolinae, 29 No. 4 (1988) 647-656. Zbl0667.54009MR982782
  3. [3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, (American Mathematical Society, Providence, 1964). Zbl0111.03403
  4. [4] P.T. Johnstone, Two Notes on Nuclei, Order, 7 (1990) 205-210. Zbl0722.06007MR1101777
  5. [5] A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck, Amer. Math. Soc. Memoirs No. 309, (1984). Zbl0541.18002MR756176
  6. [6] D. Kruml, Spatial quantales, Applied Categorical Structures, (in print). Zbl0999.06015
  7. [7] I. Kříž, (in Czech), PhD thesis, Dept. of Mathematics, Charles University, (1988). 
  8. [8] D.S. Macnab, Modal operators on Heyting algebras, Algebra Universalis, 12 (1981) 5-29. Zbl0459.06005MR608645
  9. [9] C.J. Mulvey, J.W. Pelletier, On the quantisation of points, Journal of Pure and Applied Algebra, (in print). Zbl0983.18007
  10. [10] J. Paseka, Simple quantales, Proceedings of the Eight Prague Topological Symposium 1996, (Topology Atlas1997) 314-328. Zbl0920.06007MR1617110
  11. [11] J. Paseka, D. Kruml, Embeddings of quantales into simple quantales, Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, 148 (2000) pp. 209-216. Zbl0962.06018MR1759393
  12. [12] J.W. Pelletier, J. Rosický, Simple involutive quantales, Journal ofAlgebra, 195 (1997) 367-386. Zbl0894.06005MR1469630
  13. [13] P. Resende, Quantales, finite observations and strong bisimulation, Theoretical Computer Science, (in print). Zbl0972.68122
  14. [14] K.I. Rosenthal, Quantales and their applications, (PitmanResearch Notes in Mathematics Series 234, Longman Scientific & Technical, Essex, 1990). Zbl0703.06007MR1088258
  15. [15] K.I. Rosenthal, The theory of quantaloids, (PitmanResearch Notes in Mathematics Series 348, Longman Scientific & Technical, Essex, 1996). Zbl0845.18003MR1427263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.